复杂X射线能谱构造方法研究
本文提出了基于最小二乘法的复杂X射线能谱构造方法,介绍了其构造原理,设计了由35~100kV加速电压条件下的14个X射线过滤谱组成的构造子谱组。目标能谱模拟构造结果表明,构造能谱与目标能谱总体的相对偏差基本控制在10%以内;影响其偏差的主要因素包括构造子谱数量与形态,目标能谱的非连续可微以及射线源特征X射线。 ......阅读全文
应用X射线能谱仪检验原子印油
原子印章是一种新型的印章。原子印章携带和使用极为方便,已被普遍使用。由于原子印章的特殊结构,其印油的成份不同于普通的印台油及印泥。早期的原子印油多为国外进口,目前国内亦有一些厂家生产。我们应用扫描电子显微镜和 X 射线能谱仪对原子印油进行检验,获得一些有用的信息。
太阳耀斑硬X射线能谱演变特征
太阳硬X射线是耀斑高能电子束流与太阳大气相互作用产生的韧致辐射,根据简单的太阳耀斑环物理模型,假定具有流量与能谱同步变化的高能电子束流从耀斑环顶部注入,计算了硬X射线辐射在不同的靶物质密度区的能谱演变特征.结果表明:硬X射线辐射在低大气密度靶区呈现软一硬一硬的能谱演变特征,在高密度靶区硬X射线能谱则
X射线光电子能谱(-XPS)
XPS:X射线光电子能谱分析(XPS, X-ray photoelectron spectroscopy)测试的是物体表面10纳米左右的物质的价态和元素含量,而EDS不能测价态,且测试的深度为几十纳米到几微米,基本上只能定性分析,不好做定量分析表面的元素含量。 原理:用X射线去辐射样品,使原子或分子
X射线机原理及构造
X射线机原理及构造、X射线的发现1895年德国物理学家伦琴(W.C.RÖntgen)在研究阴极射线管中气体放电现象时,用一只嵌有两个金属电极(一个叫做阳极,一个叫做阴极)的密封玻璃管,在电极两端加上几万伏的高压电,用抽气机从玻璃管内抽出空气。为了遮住高压放电时的光线(一种弧光)外泄,在玻璃管外面
X射线衍射仪基本构造
X射线衍射仪的形式多种多样,用途各异,但其基本构成很相似,为X射线衍射仪的基本构造原理图,主要部件包括4部分。(1) 高稳定度X射线源 提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。(2) 样品及样品位置取向的调整机构系统 样品须是单晶、粉末、
识别X射线能谱重叠峰的一种方法
本文提出了一种利用EDAX PV9900能谱仪半定量分析(SUPQ)中的峰背拟合(INTE)功能来正确识别X射线能谱重叠峰的可行方法,并以Ag-SnO2-In2O3合金材料为试样给出了几则应用实例和相应的实验结果。初步研究表明,该方法结合定性分析(EDAX)中的谱线识别(ID)功能可正确识别两峰能量
用x射线能谱仪测量样品成份的新方法
本文提出了x射线能谱测试中的一个新参数η_A~B,其物理意义是单个电子激发元素A与B的特征x射线强度之比。在此基础上,提出了一种新的测试方法。实验证明,新方法既具有全标样法的精度又具有无标样法简便迅速的优点。
不锈钢X射线能谱定量分析方法研究
配备X射线能谱仪的扫描电子显微镜不仅能够观察材料的微观形貌还可对微区成分进行分析,现已广泛应用于材料分析测试领域。提高能谱仪定量分析的准确度,是科学研究和工业生产的重要课题。本论文对能谱仪的物理基础、工作原理、定性分析、定量分析等方面进行了阐述,并围绕如何获得不锈钢标样定量分析的最佳工作条件以及提高
X射线能谱微区分析中出射角对X射线强度的影响
利用SEM-EDS研究了硅衬底上Au、Cu薄膜发射的不同线系特征X射线相对强度间比值随出射角的变化规律,探讨了影响其变化的原因。结果显示:随着出射角变大,同一元素不同线系X射线相对强度间比值具有一定变化规律。低能量谱线的强度相对高能量谱线逐渐变大,这种变化主要是受X射线被基体吸收效应的影响所致。在低
氚钛靶的X射线能谱初步研究
采用超低能锗探测X射线技术和βIXS方法,研究了在Ar气、空气介质中钼材料中氚和氚钛靶中氚产生的X射线能谱。Ar气介质与空气介质相比,钼材料中氚产生的X射线能谱除了与空气介质在同样的峰位能量2.2keV位置产生谱峰外,还增加了一个峰位能量为3.0keV的谱峰。
12MVX射线能谱的实验测定
对于流体物理研究所的12MV脉冲X射线装置,其光子能谱是一个重要的物理参量。当用12MV脉冲射线作为相关实验研究的辐射源时,得到的实验结果的物理解释也需要足够的谱的数据。但由于高能高注量轫致辐射的光子谱难以用通常的在线式γ谱仪测量,所以用透射系数数值分析的方法对12MV-X射线谱作了初步的实验测定。
6MV-X-射线能谱的实验测定
用穿透系数数值分析的叠代最小二乘法对稳态加速器的X射线能谱进行了实验测定,编写了叠代最小二乘法的计算程序。
X射线能谱仪的工作原理和应用
1 X射线能谱仪的工作原理 当电子枪发射的高能电子束进入样品后,与样品原子相互作用,原子内壳层电子被电离后,由较外层电子向内壳层跃迁产生具有特定能量的电磁辐射光子,即特征X射线。X射线能谱仪就是通过探测样品产生的特征X射线能量来确定其相对应的元素,并对其进行相应的定性、定量分析。 2 扫描电
Z箍缩软X射线连续能谱测量
诊断Z箍缩等离子体不同时刻的空间分布及状态是认识等离子体运动规律进而控制其箍缩过程以便加以利用的必经环节。在箍缩过程中,离子、电子和光子发生强烈的相互作用,探测出射的X光可不破坏等离子体原有状态而获取三者运动信息。通过测量X光能谱可以探知辐射场温度、离子密度、辐射冲击过程等等。受现有装置驱动能力的限
软X射线能谱定量测量技术研究
采用每毫米 10 0 0线的自支撑透射光栅配上背照射软X射线CCD(charge coupleddevice)组成了透射光栅谱仪 ,利用北京同步辐射装置 (BSRF) 3W1B光束线软X射线实验站上X射线源分别对透射光栅的衍射效率和软X射线CCD的响应灵敏度进行了准确的实验标定 ,获得了 15 0e
X射线能谱仪和波谱仪的优缺点
能谱仪全称为能量分散谱仪(EDS)。 目前最常用的是Si(Li)X射线能谱仪,其关键部件是Si(Li)检测器,即锂漂移硅固态检测器,它实际上是一个以Li为施主杂质的n-i-p型二极管。 Si(Li)能谱仪的优点 分析速度快 能谱仪可以同时接受和检测所有不同能量的X射线光子信号,故可在几分
电子探针分析的X射线能谱法
本文介绍了使用硅(锂)检测器进行定量电子探针分析的一种方法,这种方法使用了背景模拟技术及其它技术中的电荷收集不完全和电子噪声的校正。轻元素分析的改进对硅酸盐样品是特别有利的,使之尽可能采用纯金属作分析标样。这种方法已被用于各种地球化学样品的分析中(包括用JG—1和JB—1岩石做成的玻璃)。与湿式化学
美国KEVEX公司8000型x射线能谱仪
8000型X射线能谱仪主要做能量分散X射线分析,可用于冶金、电子、地球化学勘探、化工、石油、生物医学等许多领域。仪器由X射线探测器,分析仪,小型计算机、大容量存贮器,显示器,键盘和软件构成。
多层镜软X射线能谱仪的研制
软X射线能谱测量是ICF实验中的重要内容,测量意义重大。软X射线能诊断通过光谱分析,可以得到X射线总的通量,辐射温度,转换效率以及反照率。这些都是间接驱动黑腔热力学的重要参数。作为黑体腔特征诊断系统,软X射线能诊断系统测量黑体腔中发射出的X射线,可得出黑腔中辐射温度的时间变化图。针对目前常用的谱仪往
快脉冲硬X射线能谱测量实验研究
研究设计了以解析吸收片后的透射率来测量快脉冲硬X射线辐射场能谱的实验方法。对实验方案进行了理论模拟设计,并获得了解谱必要的理论数据,通过测量不同吸收片后光强的实验方法获得了透射系数,用微扰的数学方法完成了测量谱的解析,复现了测量位置处快脉冲硬X射线辐射场能谱,最后对该方法的可靠性进行了验证。
X射线能谱仪的使用原理及应用
在许多材料的研究与应用中,需要用到一些特殊的仪器来对各种材料从成分和结构等方面进行分析研究。其中,X射线能谱仪(XPS)就是常用仪器。下面详细介绍一下X射线能谱仪的基本原理、结构、优缺点及应用。 X射线能谱仪的简介 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在
X射线光电子能谱仪原理
X射线光子的能量在1000~1500ev之间,不仅可使分子的价电子电离而且也可以把内层电子激发出来,内层电子的能级受分子环境的影响很小。 同一原子的内层电子结合能在不同分子中相差很小,故它是特征的。光子入射到固体表面激发出光电子,利用能量分析器对光电子进行分析的实验技术称为光电子能谱。 XPS的原理
X射线能谱测量的蒙特卡罗成像模拟
针对高能强流电子束轰击高Z靶产生的X射线的能谱测量问题,采用蒙特卡罗方法进行成像模拟研究。高能X射线能谱通常由对X射线经过衰减体的直穿透射率曲线进行解谱获得。设计了带多准直孔的截锥体模型,在单次模拟成像中获得完整的衰减透射率曲线,有效避免了散射光子对透射率曲线以及X射线能谱重建的影响。成像面采用非均
基于MARS系统的X射线能谱CT研究
X射线是19世纪末物理学的三大发现(X射线1895年、放射性1896年、电子1897年)之一,这一发现标志着现代物理学的诞生。由于X射线是波长介于紫外线和γ射线之间的电磁辐射,因而它具有很高的穿透本领,能穿透许多对可见光不透明的物质,基于此,可用来帮助人们进行医学诊断和治疗,或者用于工业等领域的非破
用于高能X射线能谱测量的MLS法
为满足高能X射线能谱测量的需要,提出采用MLS法进行能谱测量的方案。MLS法克服了其他测量方法散射不易控制、光场不均匀性影响较大的缺点,还具有对不同角度能谱进行测量的优势。对MLS法的测量原理以及测量过程中的注意事项进行了明确,并利用蒙特卡罗方法针对一特定的X射线能谱设计了两种不同介质的测量装置,并
X射线能谱仪和波谱仪的优缺点
能谱仪全称为能量分散谱仪(EDS)。 目前最常用的是Si(Li)X射线能谱仪,其关键部件是Si(Li)检测器,即锂漂移硅固态检测器,它实际上是一个以Li为施主杂质的n-i-p型二极管。Si(Li)能谱仪的优点 分析速度快 能谱仪可以同时接受和检测所有不同能量的X射线光子信号,故可在几分钟内分析和
X射线能谱分析中谱线重叠问题
扫描电子显微镜上配接Si(Li)探测器X射线能谱仪,进行地质样品分析时,由于它的峰,背比值较低和谱线分辨率不如X射线波谱仪,尽管探测效率很高,仍然存在谱线的干扰或重叠现象。谱线的干扰或重叠现象主要划分为三个类型:相邻或相近元素同一线系(K、L、M)的谱线之间重叠;原子序数较低的K线系谱线与原子序数较
X射线衍射仪的基本构造
X射线衍射仪的形式多种多样,用途各异,但其基本构成很相似,为X射线衍射仪的基本构造原理图,主要部件包括4部分。(1) 高稳定度X射线源 提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。(2) 样品及样品位置取向的调整机构系统 样品须是单晶、粉末、
x射线衍射仪的基本构造
X射线衍射仪的形式多种多样,用途各异,但其基本构成很相似,为X射线衍射仪的基本构造原理图,主要部件包括4部分。 (1) 高稳定度X射线源 提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。 (2) 样品及样品位置取向的调整机构系统 样品
x射线衍射仪的基本构造
X射线衍射仪的形式多种多样,用途各异,但其基本构成很相似,为X射线衍射仪的基本构造原理图,主要部件包括4部分。 (1) 高稳定度X射线源 提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。 (2) 样品及样品位置取向的调整机构系统 样品