“起荧”翡翠的矿物学特征及光学原理研究

采用X射线粉末衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)、X射线能谱仪(EDS)和扫描电子显微镜(SEM)等测试仪器对目前珠宝市场价值较高的"起荧"翡翠样品进行了矿物学、岩石学研究,并对其"起荧"现象的光学原理进行了初步探讨。研究结果表明,翡翠(包括硬玉质翡翠和绿辉石质翡翠)的"起荧"现象与其化分成分无必要关联。翡翠发生"起荧"现象的必要条件为:1.翡翠饰品应整体或局部被切磨成弧面琢型,其弧面琢型的高度对"起荧"现象的强弱有一定的影响;2.翡翠饰品的表面抛光精良;3.翡翠的矿物颗粒大小基本上在0.05~0.14 mm范围内。 ......阅读全文

“起荧”翡翠的矿物学特征及光学原理研究

采用X射线粉末衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)、X射线能谱仪(EDS)和扫描电子显微镜(SEM)等测试仪器对目前珠宝市场价值较高的"起荧"翡翠样品进行了矿物学、岩石学研究,并对其"起荧"现象的光学原理进行了初步探讨。研究结果表明,翡翠(包括硬玉质翡翠和绿辉石质翡翠)的"起荧"现象与

LSM光学原理

      LSCM 主要基于共轭焦点技术设计而成,即以激光作为光源,采集时使激光光源、被测样品和探测器处于彼此的共轭位置上。基本工作过程为:光源发射出的激光束经挡板上的照明针孔后形成一个点光源,其射出飞光线经双色反射镜发射后,通过显微物镜聚焦到样品上的一点,该点由光源照射激发出荧光,透过显微物镜和

光学显微镜的光学原理

  显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的

光学显微镜的光学原理

显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的放大

光学显微镜的光学原理

显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的放大

近场光学的原理

传统的光学理论,如几何光学、物理光学等,通常只研究远离光源或者远离物体的光场分布,一般统称为远场光学。远场光学在原理上存在着一个远场衍射极限,限制了利用远场光学原理进行显微和其它光学应用时的最小分辨尺寸和最小标记尺寸。而近场光学则研究距离光源或物体一个波长范围内的光场分布。在近场光学研究领域,远场衍

光学显微镜的光学原理简介

  显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的

简述光学显微镜的光学原理

  显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的

关于目视光学器件—目镜的特征介绍

  1、目视光学器件—目镜的标记 目镜上刻有如下标记:目镜类别、放大率。例如10×平场目镜刻有p10×;p即表示平场目镜,10×为放大率,一般惠更斯目镜不刻标记。  2、目视光学器件—目镜的放大倍数 目镜放大倍数是有规定的。目镜的作用是把物镜放大的实像(中间像)再放大一遍,并把物像映入观察者的眼中,

光学显微镜的光学原理及配件

  光学原理  显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放

光学显微镜的光学原理及配件

  光学原理  显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放

光学显微镜的光学原理是什么

       光学显微镜(Optical Microscope,简写OM)是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。  显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在

显微镜光学原理

光学原理显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米( 明视距离)处的放大率为

光学成像的原理

光学成像原理简介一个成像系统主要包含以下几个要素:·视场:能够在显示器上看到的物体上的部分·分辨率:能够最小分辨的物体上两点间的距离·景深:成像系统能够保持聚焦清晰的最近和最远的距离之差·工作距离:观察物体时,镜头最后一面透镜顶点到被观察物体的距离·畸变:由镜头所引起的光学误差,使得像面上各

如何学好光学原理(波恩)

特别经典的书要学好、深刻理解它,我觉得需要和你的工程经验结合起来光学原理这本书特别严谨,其中部分相干理论可以说非常有特色尽量找些大把的时间,心态很平和、平静地学习各个章节,仔细地按他的思路推一推公式,收获会很多我觉得一次把它学好是不容易的,可以说每学一遍都有收获

中国科大首次揭示雷暴云顶放电的光学特征

  中国科学技术大学雷久侯、祝宝友和陆高鹏团队基于自主发展的地基闪电观测阵列,结合国际空间站搭载的高时空分辨率光学观测资料,首次揭示雷暴云顶放电的光学特征及其诱发的低电离层扰动特征,提出利用天电信号来探测雷暴云顶放电现象和研究中高层大气耦合的新思路。相关成果近日发表于《自然-通讯》。  对流层闪电可

光学显微镜的原理

  显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的

光学显微镜成像原理

学生用的显微镜是反像,上下左右与实际物体正好相反。物镜放大率乘以目镜放大率就是总放大倍数。

近场光学的近场探测原理

近场光学探测是由一系列转换完成的:(1) 当用传播波或隐失波照射高空间频率的物体时, 将产生隐失波;(2) 这样产生的隐失场不服从瑞利判据。这些场在远小于一个波长的尺度的局部范围内有很大的变化;(3) 根据互易原理, 这些不可探测的高频局域场可以通过微小物体的转换而将这个隐失场转换为新的隐失场以及传

显微镜的光学原理

光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放

光学显微镜成像原理

  显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。光学显微镜成像原理:       光学显微镜主要由目镜、物镜、载物台和反光镜组成。目镜和物镜都是凸透镜,焦距不同。物镜的凸透镜焦距小于目镜的凸透镜的焦距。物镜相当于投影

光学检测仪的原理

  AOI 软件中有一个综合性的验证功能,它能减少检查的误报,保证检测程序无缺陷。它可以检查储存起来的有缺陷的样品,例如,修理站存放的样品,以及印刷了焊膏的空白印刷电路板。在优化阶段,在这方面花时间的原因是为了不让任何缺陷溜过去。所有已知的缺陷都必须检查,同时要把允许出现的误报数量做到最小。在针对减

近场光学显微镜原理

传统的光学显微镜由光学镜头组成,可以将物体放大至几千倍来观察细节,由于光波的衍射效应,无限提高放大倍数是不可能的,因为会遇到光波衍射极限这一障碍,传统的光学显微镜的分辨率不能超过光波长的一半。比如,以波长λ=400nm的绿光作为光源,仅能分辨相距为200nm的两个物体。实际应用中λ>400nm,分辨

显微镜的光学原理

光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放

光学数码显微镜的光学原理以及使用步骤说明

 光学数码显微镜的功能齐全,操作画面类似于平板电脑等易于理解。通过触摸面板操作,即使是使用显微镜的用户,也可以轻松快速地获得高质量的图像和的测量结果。光学数码显微镜蕞高观察倍率可达到9,000倍,具有更别的解析能力。   光学数码显微镜的原理:   光学数码显微镜是利用光学原理,把人眼所不能分辨的微

近场光学显微镜的近场光学显微镜原理

传统的光学显微镜由光学镜头组成,可以将物体放大至几千倍来观察细节,由于光波的衍射效应,无限提高放大倍数是不可能的,因为会遇到光波衍射极限这一障碍,传统的光学显微镜的分辨率不能超过光波长的一半。比如,以波长λ=400nm的绿光作为光源,仅能分辨相距为200nm的两个物体。实际应用中λ>400nm,分辨

显微镜的基本原理-—-光学原理

显微镜的基本原理 — 光学原理:折射和折射率  光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现象,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。 显微镜的基本

光学显微镜的成像原理

基本原理在光学显微镜下无法看清小于0.2µm的细微结构,这些结构称为亚显微结构(submicroscopic structures)或超微结构(ultramicroscopic structures;ultrastructures)。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。

光学显微镜的工作原理

  显微镜是一种精密的光学仪器,已有300多年的发展史。自从有了显微镜,人们看到了过去看不到的许多微小生物和构成生物的基本单元——细胞。目前,不仅有能放大千余倍的光学显微镜,而且有放大几十万倍的电子显微镜,使我们对生物体的生命活动规律有了更进一步的认识。在普通中学生物教学大纲中规定的实验中,大部分要

光学显微镜的工作原理

光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现象,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。透镜的性能透镜是组成显微镜光学系统的基本的光学元件,物镜目镜及