俄歇电子能谱分析的用途

元素的定性和半定量分析(相对精度30%);元素的深度分布分析(Ar离子束进行样品表面剥离);元素的化学价态分析;界面分析......阅读全文

俄歇电子能谱分析的用途

元素的定性和半定量分析(相对精度30%);元素的深度分布分析(Ar离子束进行样品表面剥离);元素的化学价态分析;界面分析

俄歇电子能谱分析的依据

俄歇电子的激发方式虽然有多种(如X射线、电子束等),但通常主要采用一次电子激发。因为电子便于产生高束流,容易聚焦和偏转。分析依据:俄歇电子的能量具有特征值,其能量特征主要由原子的种类确定,只依赖于原子的能级结构和俄歇电子发射前它所处的能级位置, 和入射电子的能量无关。测试俄歇电子的能量,可以进行定性

俄歇电子能谱分析的特点

1)分析层薄,0~3nm。AES的采样深度为1~2nm,比XPS(对无机物约2nm,对高聚物≤10nm)还要浅,更适合于表面元素定性和定量分析。(2)分析元素广,除H和He外的所有元素,对轻元素敏感。(3)分析区域小,≤50nm区域内成分变化的分析。由于电子束束斑非常小,AES具有很高的空间分辨率,

俄歇电子能谱分析的特点

横向分辨率取决于入射束斑大小;俄歇电子来自浅层表面(电子平均自由程决定),其信息深度为1.0-3.0nm;检测极限可达10-3单原子层(可以有效的用来研究固体表面的化学吸附和化学反应);并且其能谱的能量位置固定,容易分析;适用于轻元素的分析

俄歇电子能谱分析的原理

俄歇电子能谱分析是通过检测试样表面受电子或X射线激发后射出的俄歇电子的能量分布来进行表面分析的方法,写作AES。是电子能谱分析技术之一。其原理是:用具有一定能量的电子束或X射线激发试样,使表面原子内层能级产生空穴,原子外层电子向内层跃迁过程中释放的能量又使该原子核外的另一电子受激成为自由电子,该电子

俄歇电子能谱

俄歇电子能谱(Auger electron spectroscopy,简称AES),是一种表面科学和材料科学的分析技术。因此技术主要借由俄歇效应进行分析而命名之。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逃脱离开原子,这一连串事件称为俄歇效应,而逃脱出来的

俄歇电子能谱

俄歇电子能谱简称AES,是一种表面科学和材料科学的分析技术。因此技术主要借由俄歇效应进行分析而命名之。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逃脱离开原子,这一连串事件称为俄歇效应,而逃脱出来的电子称为俄歇电子。1953年,俄歇电子能谱逐渐开始被实际应用

俄歇电子能谱分析被测样品要求

导体或半导体材料,表面清洁

俄歇电子能谱(2)

基本原理物理原理入射电子束和物质作用,可以激发出原子的内层电子形成空穴。外层电子填充空穴向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。俄歇电子和X射线产额入射电子束和物质作用,可以激发出原子的内层电子。外层电子

俄歇电子能谱仪

俄歇电子能谱仪(Auger Electron Spectroscopy,AES),作为一种最广泛使用的分析方法而显露头角。这种方法的优点是:在靠近表面5-20埃范围内化学分析的灵敏度高;数据分析速度快;能探测周期表上He以后的所有元素。虽然最初俄歇电子能谱单纯作为一种研究手段,但现在它已成为常规分析

俄歇电子能谱(3)

俄歇跃迁对于自由原子来说,围绕原子核运转的电子处于一些不连续的"轨道 ”上,这些 “ 轨道 ” 又组成K、L、M、N 等电子壳层。 我们用“ 能级 ”的概念来代表某一轨道上电子能量的大小。由于入射电子的激发,内层 电子被 电离, 留下一个空穴。 此时原子处于激发态, 不稳定。 较高能级上的一

俄歇电子能谱(1)

俄歇电子能谱(Auger electron spectroscopy,简称AES),是一种表面科学和材料科学的分析技术。因此技术主要借由俄歇效应进行分析而命名之。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逃脱离开原子,这一连串事件称为俄歇效应,而逃脱出

俄歇电子能谱分析的基本原理

俄歇电子的产生和俄歇电子跃迁过程:一定能量的电子束轰击固体样品表面,将样品内原子的内层电子击出,使原子处于高能的激发态。外层电子跃迁到内层的电子空位,同时以两种方式释放能量:发射特征X射线;或引起另一外层电子电离,使其以特征能量射出固体样品表面,此即俄歇电子。俄歇电子跃迁过程俄歇电子跃迁过程能级图俄

俄歇电子能谱的原理

向样品照射电子束后,电子和物质之间产生剧烈的相互作用,如下图(上)所示,各种电子和电磁波被释放出来。由于其中俄歇电子具备各个元素特有的能量,所以如对能谱进行解析,可以鉴定物质表面所存在的元素(定性分析)通过峰强度对比则可以定量测定元素(定量分析)。另外,俄歇电子在物质中非弹性散射情况下前进的距离(平

俄歇电子能谱仪简介

  俄歇电子能谱仪(AugerElectronSpectroscopy,AES),作为一种最广泛使用的分析方法而显露头角。这种方法的优点是:在靠近表面5-20埃范围内化学分析的灵敏度高;数据分析速度快;能探测周期表上He以后的所有元素。虽然最初俄歇电子能谱单纯作为一种研究手段,但现在它已成为常规分析

俄歇电子能谱法(AES)

AES可以用于研究固体表面的能带结构、表面物理化学性质的变化(如表面吸附、脱附以及表面化学反应);用于材料组分的确定、纯度的检测、材料尤其是薄膜材料的生长等。俄歇电子能谱(Auger Electron Spectrometry,简称AES)是用具有一定能量的电子束(或X射线)激发样品俄歇效应,通过检

俄歇电子能谱的特点

①俄歇电子的能量是靶物质所特有的,与入射电子束的能量无关。右图是一些主要的俄歇电子能量。可见对于Z=3-14的元素,最突出的俄歇效应是由KLL跃迁形成的,对Z=14-40的元素是LMM跃迁,对Z=40-79的元素是MNN跃迁。大多数元素和一些化合物的俄歇电子能量可以从手册中查到。②俄歇电子只能从20

俄歇电子能谱仪器构造

俄歇能谱仪包括电子光学系统、电子能量分析器、样品安放系统、离子枪、超高真空系统。以下分别进行介绍。电子光学系统电子光学系统主要由电子激发源(热阴极电子枪)、电子束聚焦(电磁透镜)和偏转系统(偏转线圈)组成。电子光学系统的主要指标是入射电子束能量,束流强度和束直径三个指标。其中AES分析的最小区域基本

俄歇电子能谱法的简介

中文名称俄歇电子能谱法英文名称Auger electron spectroscopy定  义测量和分析试样产生的俄歇电子的能谱的电子能谱法。应用学科机械工程(一级学科),分析仪器(二级学科),能谱和射线分析仪器-能谱和射线分析仪器分析原理(三级学科)

俄歇电子能谱成分深度分析

AES的深度分析功能是AES最有用的分析功能,主要分析元素及含量随样品表面深度的变化。镀铜钢深度分析曲线采用能量为500eV~5keV的惰性气体氩离子溅射逐层剥离样品,并用俄歇电子能谱仪对样品原位进行分析,测量俄歇电子信号强度I (元素含量)随溅射时间t(溅射深度)的关系曲线,这样就可以获得元素在样

俄歇电子能谱的物理原理

入射电子束和物质作用,可以激发出原子的内层电子形成空穴。外层电子填充空穴向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以

俄歇电子能谱仪的简介

欧杰电子能谱术也称俄歇电子能谱仪(Auger electron spectroscopy,简称AES),是一种表面科学和材料科学的分析技术。因此技术主要借由俄歇效应进行分析而命名之。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逃脱离开原子,这一连串事件称为俄

俄歇电子能谱的工作原理

当一个具有足够能量的入射电子使原子内层电离时,该空穴立即就被另一电子通过L1→K跃迁所填充。这个跃迁多余的能量EK-EL1如使L2能级上的电子产生跃迁,这个电子就从该原子发射出去称为俄歇电子。这个俄歇电子的能量约等于EK-EL1-EL2。这种发射过程称为KL1L2跃迁。此外类似的还会有KL1L1、L

俄歇电子能谱仪的应用

近年来,俄歇电子能谱仪( AES) 在材料表面化学成分分析、表面元素定性和半定量分析、元素深度分布分析及微区分析方面崭露头角。AES 的优点是,在距表面 0.5 ~ 2nm 范围内, 灵敏度高、分析速度快,能探测周期表上 He 以后的所有元素。最初,俄歇电子能谱仪主要用于研究工作 ,现已成为一种常规

俄歇电子能谱法(AES)介绍

俄歇电子能谱法是用具有一定能量的电子束(或X射线)激发样品俄歇效应,通过检测俄歇电子的能量和强度,从而获得有关材料表面化学成分和结构的信息的方法。利用受激原子俄歇跃迁退激过程发射的俄歇电子对试样微区的表面成分进行的定性定量分析。

芯片引线键合点失效的俄歇电子能谱分析

采用俄歇电子能谱法(AES),对某芯片的正常引线键合点和失效引线键合点进行了分析.实验结果表明:失效引线键合点表面出现了Cl元素,其失效原因是在键合点处形成的氯化物腐蚀键合点,导致键合点失效;溅射20min后,键合点内发生Ni金属的迁移,这也是导致键合点失效的原因之一. 

芯片引线键合点失效的俄歇电子能谱分析

采用俄歇电子能谱法(AES),对某芯片的正常引线键合点和失效引线键合点进行了分析.实验结果表明:失效引线键合点表面出现了Cl元素,其失效原因是在键合点处形成的氯化物腐蚀键合点,导致键合点失效;溅射20min后,键合点内发生Ni金属的迁移,这也是导致键合点失效的原因之一. 

俄歇电子能谱仪的工作原理

  当一个具有足够能量的入射电子使原子内层电离时,该空穴立即就被另一电子通过L1→K跃迁所填充。这个跃迁多余的能量EK-EL1如使L2能级上的电子产生跃迁,这个电子就从该原子发射出去称为俄歇电子。这个俄歇电子的能量约等于EK-EL1-EL2。这种发射过程称为KL1L2跃迁。此外类似的还会有KL1L1

俄歇电子能谱的起源和介绍

俄歇电子能谱(Auger electron spectroscopy,简称AES),是一种表面科学和材料科学的分析技术。因此技术主要借由俄歇效应进行分析而命名之。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逃脱离开原子,这一连串事件称为俄歇效应,而逃脱出来的

俄歇电子能谱定量分析

大多数元素在50~1000eV能量范围内都有产额较高的俄歇电子,它们的有效激发体积(空间分辨率)取决于入射电子束的束斑直径和俄歇电子的发射深度。 能够保持特征能量(没有能量损失)而逸出表面的俄歇电子,发射深度仅限于表面以下大约2nm以内,约相当于表面几个原子层,且发射(逸出)深度与俄歇电子的能量以