红外光谱仪吸收峰的强度及反常吸收现象的解决方法

1 实验部分1.1 仪器及条件尼高力红外光谱仪,配置DTGS检测器;聚苯乙烯配备的1.5mil(38μm)标准薄膜;KBr(光谱纯);硬脂酸(SA,纯度大于99%);背景单光束谱和样品单光束谱分别经累加32次扫描得到。1.2 聚苯乙烯IR谱分别在4,8,16cm-1分辨率下,以空气作背景,聚苯乙烯薄膜为样品测量得到不同分辨率下聚苯乙烯的吸收光谱。研究反常吸收时,背景单光束谱和样品单光束谱都扫描同一聚苯乙烯薄膜,也可以称为测量聚苯乙烯的“基线”。1.3 硬脂酸IR谱制备含有不同浓度的硬脂酸KBr压片,在4cm-1分辨率下,以空气为背景测量硬脂酸的吸收光谱。观察反常吸收现象时,背景单光束谱和样品单光束谱扫描同一硬脂酸KBr压片。2 结果与讨论2.1 反常吸收现象及特点图1(a)是在4cm-1分辨率下得到的聚苯乙烯的红外吸收光谱。图中3025,2924,1493,1452,756,699cm-1等六个吸收峰的吸光度A均超过1.0。图1......阅读全文

红外光谱仪吸收峰的强度及反常吸收现象的解决方法

1 实验部分1.1 仪器及条件尼高力红外光谱仪,配置DTGS检测器;聚苯乙烯配备的1.5mil(38μm)标准薄膜;KBr(光谱纯);硬脂酸(SA,纯度大于99%);背景单光束谱和样品单光束谱分别经累加32次扫描得到。1.2 聚苯乙烯IR谱分别在4,8,16cm-1分辨率下,以空气作背景,聚苯乙烯薄

实验室分析方法红外吸收光谱红外吸收峰的强度

分子振动时偶极矩的变化不仅决定了该分子能否吸收红外光产生红外光谱,而且还关系到吸收峰的强度。根据量子理论,红外吸收峰的强度与分子振动时偶极矩变化的平方成正比。因此,振动时偶极矩变化越大,吸收强度越强。而偶极矩变化大小主要取决于下列四种因素。 化学键两端连接的原子,若它们的电负性相差越大(极性越大),

甲基的红外吸收峰

酚羟基一般在3200-3400左右甲基伸缩振动在2900附近,变形振动在1380,1430附近酯基在1600-1700有极强的吸收,主要是羰基的吸收峰苯环骨架振动在1600,1580附近有吸收紫外吸收峰在237.5nm

甲基的红外吸收峰

酚羟基一般在3200-3400左右甲基伸缩振动在2900附近,变形振动在1380,1430附近酯基在1600-1700有极强的吸收,主要是羰基的吸收峰苯环骨架振动在1600,1580附近有吸收紫外吸收峰在237.5nm

甲基的红外吸收峰

酚羟基一般在3200-3400左右甲基伸缩振动在2900附近,变形振动在1380,1430附近酯基在1600-1700有极强的吸收,主要是羰基的吸收峰苯环骨架振动在1600,1580附近有吸收紫外吸收峰在237.5nm

羰基的红外吸收峰

  (包括醛、酮、羧酸、酯、酸酐和酰胺等)   羰基吸收峰是在1900-1600cm-1区域出现强的C=O伸缩吸收谱带,这个谱带由于其位置的相对恒、强度高、受干扰小,已成为红外光谱图中最容易辨别的谱带之一。此吸收峰最常出现在1755-1670cm-1,但不同类别的化合物 C=O 吸收峰也各不相同。 

红外吸收光谱主要的吸收峰

紫外无吸收,表明该化合物中没有存在共轭体系。在3000左右的峰表明该化合物中可能有:炔h、烯氢、醛基h或烷基h;1650左右的吸收峰,则表明体系中存在羰基c=o,可能是酸、醛酮、酰胺、酯或酸酐之类的

红外吸收光谱主要的吸收峰

紫外无吸收,表明该化合物中没有存在共轭体系。在3000左右的峰表明该化合物中可能有:炔h、烯氢、醛基h或烷基h;1650左右的吸收峰,则表明体系中存在羰基c=o,可能是酸、醛酮、酰胺、酯或酸酐之类的

双键的红外吸收峰位置

简单的方法是光谱的方法:1、红外光谱.双键吸收峰在1680-1610cm-1,三键吸收峰在2260-2100cm-1.2、核磁共振氢谱.双键碳原子上的氢化学位移在5-7ppm,三键碳原子上的氢化学位移在2-4ppm.3、核磁共振碳谱.双键碳化学位移约20ppm,三键碳化学位移约5ppm.如果用化学方

双键的红外吸收峰位置

简单的方法是光谱的方法:1、红外光谱.双键吸收峰在1680-1610cm-1,三键吸收峰在2260-2100cm-1.2、核磁共振氢谱.双键碳原子上的氢化学位移在5-7ppm,三键碳原子上的氢化学位移在2-4ppm.3、核磁共振碳谱.双键碳化学位移约20ppm,三键碳化学位移约5ppm.如果用化学方

红外光谱仪的故障现象及解决措施

傅里叶变换红外光谱仪故障现象、原因及解决措施 序号 现象 原因分析

红外吸收峰的强弱代表什么

在不考虑相邻基因相互影响的前提下,键的偶极距越大,伸缩振动过程中偶极距的变化也越大,其吸收峰的强度亦愈强。

红外吸收峰的强弱代表什么

在不考虑相邻基因相互影响的前提下,键的偶极距越大,伸缩振动过程中偶极距的变化也越大,其吸收峰的强度亦愈强。

硫化镉的红外吸收峰在哪

固体红外么?CO2的吸附态吸收峰比较弄,和究竟是甚么金属吸附的有很大关系。金属决定了其吸附形态,如果形态照旧以不破坏原有价键情况为主的话,在1800~1700波数附近会有C=O键的伸缩振动吸收水的话在3400~3200波数的地方会有很大的O-H伸缩振动峰,

红外吸收峰的强弱代表什么

在不考虑相邻基因相互影响的前提下,键的偶极距越大,伸缩振动过程中偶极距的变化也越大,其吸收峰的强度亦愈强。

红外吸收峰的强弱代表什么

在不考虑相邻基因相互影响的前提下,键的偶极距越大,伸缩振动过程中偶极距的变化也越大,其吸收峰的强度亦愈强。

红外吸收峰的强弱代表什么

在不考虑相邻基因相互影响的前提下,键的偶极距越大,伸缩振动过程中偶极距的变化也越大,其吸收峰的强度亦愈强。

红外吸收峰的强弱代表什么

在不考虑相邻基因相互影响的前提下,键的偶极距越大,伸缩振动过程中偶极距的变化也越大,其吸收峰的强度亦愈强

硫化镉的红外吸收峰在哪

固体红外么?CO2的吸附态吸收峰比较弄,和究竟是甚么金属吸附的有很大关系。金属决定了其吸附形态,如果形态照旧以不破坏原有价键情况为主的话,在1800~1700波数附近会有C=O键的伸缩振动吸收水的话在3400~3200波数的地方会有很大的O-H伸缩振动峰,液体红外没做过

红外吸收峰的强弱代表什么

在不考虑相邻基因相互影响的前提下,键的偶极距越大,伸缩振动过程中偶极距的变化也越大,其吸收峰的强度亦愈强。

羰基红外吸收峰有哪些

  羰基吸收峰是在1900-1600cm-1区域出现强的C=O伸缩吸收谱带,这个谱带由于其位置的相对恒、强度高、受干扰小,已成为红外光谱图中最容易辨别的谱带之一。此吸收峰最常出现在1755-1670cm-1,但不同类别的化合物 C=O 吸收峰也各不相同。  关于 C=O 化合物的红外吸收规律在前面已

羰基红外吸收峰有哪些

羰基吸收峰是在1900-1600cm-1区域出现强的C=O伸缩吸收谱带,这个谱带由于其位置的相对恒、强度高、受干扰小,已成为红外光谱图中最容易辨别的谱带之一。此吸收峰最常出现在1755-1670cm-1,但不同类别的化合物 C=O 吸收峰也各不相同。  关于 C=O 化合物的红外吸收规律在前面已叙述

羰基红外吸收峰常见位置

  利用红外吸收光谱进行有机化合物定性分析可分为两个方面:一是官能团定性分析,主要依据红外吸收光谱的特征频率来鉴别含有哪些官能团,以确定未知化合物的类别;二是结构分析,即利用红外吸收光谱提供的信息,结合未知物的各种性质和其它结构分析手段(如紫外吸收光谱、核磁共振波谱、质谱)提供的信息,来确定未知物的

羧基和羟基的红外吸收峰位置

羟基的伸缩振动是3600cm-1  左右,一般由于形成氢键还会红移,弯曲振动在醇酚中是1410-1260(s),谱图如果1250处有峰可能是氧化物中的金属与氧键连接的峰。可能的话建议对比一下,还有就是看看指纹区的变化。

羧基和羟基的红外吸收峰位置

一分钟了解羟基的红外吸收峰位置  羟基的伸缩振动是3600cm-1  左右,一般由于形成氢键还会红移,弯曲振动在醇酚中是1410-1260(s),谱图如果1250处有峰可能是氧化物中的金属与氧键连接的峰。可能的话建议对比一下,还有就是看看指纹区的变化。

羧基和羟基的红外吸收峰位置

一分钟了解羟基的红外吸收峰位置  羟基的伸缩振动是3600cm-1  左右,一般由于形成氢键还会红移,弯曲振动在醇酚中是1410-1260(s),谱图如果1250处有峰可能是氧化物中的金属与氧键连接的峰。可能的话建议对比一下,还有就是看看指纹区的变化。

羧基和羟基的红外吸收峰位置

一分钟了解羟基的红外吸收峰位置  羟基的伸缩振动是3600cm-1  左右,一般由于形成氢键还会红移,弯曲振动在醇酚中是1410-1260(s),谱图如果1250处有峰可能是氧化物中的金属与氧键连接的峰。可能的话建议对比一下,还有就是看看指纹区的变化。

快速了解亚甲基的红外吸收峰

  2700-3100一般是甲基、亚甲基及次甲基的伸缩振动

红外光谱吸收强度如何表达

红外光谱吸收强度表达具体介绍如下:1、根据分子式计算不饱和度公式: 不饱和度Ω=n4+1+(n3-n1)/2其中:n4:化合价为4价的原子个数,n3:化合价为3价的原子个数,n1:化合价为1价的原子个数。2、分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000

红外谱图中峰强度怎么看

首先分清是红外透射还是红外反射的谱图,然后根据测试仪器的软件才能确定波峰或者波谷哪个是特征峰。强度是从0刻度处到波峰(或者波谷)的垂直长度