简述光电倍增管的原理
光电倍增管是一种真空光电器件,它的工作原理是建立在光电效应、二次电子发射和电子光学的理论基础上,它的工作过程是光子入射到光电阴极上产生光电子,光电子通过电子光学输入系统进入倍增系统,电子得到倍增,最后阳极把电子收集起来形成阳极电流或电压,因此,光电倍增管的作用不仅起转换作用,而且起了在管内把电流放大的作用。......阅读全文
斯派克光谱仪光电倍增管简介
外光电效应所释放的电子打在物体上能释放出更多的电子的现象称为二次电子倍增。光电倍增管就是根据二次电子倍增现象制造的。它由一个光阴极、多个打拿极和一个阳极所组成,见图,每一个电极保持比前一个电极高得多的电压(如100V)。当入射光照射到光阴极而释放出电子时,电子在高真空中被电场加速,打到第一打拿极
光电倍增管式光谱仪的缺点有哪些?
①灵敏度因强光照射或因照射时间过长而降低,停止照射后会部分地恢复,这种现象称为“疲乏”。我们在对一台使用了多年光电倍增管式光谱仪对同一白炽灯连续重复测量90 分钟试验中,其光通量不断单向下降达3%,但色温变化很小在5K 内(0.2%); ②光阴极表面各点灵敏度不均匀; ③在实际测量中施加的电
简介光电倍增管式光谱仪内部的工作原理
被测灯发出的复色光在积分球内均匀混光后被光纤输入端头接收,并由光纤传送进入光谱仪,再经滤色进入输入狭缝,投射到光栅上对光谱光功率信号进行分解。 因为作为光电转换的光电倍增管本身无法区分光谱,所以由机械装置转动光栅来把一定带宽的单色光功率信号按照波长大小依次投射到输出狭缝,由紧贴狭缝的光电倍增管
斯派克光谱仪光电倍增管的窗口分类和组成
光电倍增管的窗口可分为侧窗式和端窗式两种. 光电倍增管知道,是基于外光电效应和二次电子发射效应的电子真空器件。它利用二次电子发射使逸出的光电子倍增,获得远高于光电管的灵敏度,能测量微弱的光信号。 光电倍增管可分成4个主要部分,分别是:光电阴极、电子光学输入系统、电子倍增系统、阳极。 PMT
斯派克光谱仪光电倍增管国内外发展情况
中阶梯光栅与棱镜组合的色散系统采用CCD、CID一类面阵式检测器,就组成了全谱(可以覆盖全波长范围)直读光谱仪,兼具光电法与摄谱法的优点,从而能更大限度地获取光谱信息,便于进行光谱干扰和谱线强度空间分布同时测量,有利于多谱图校正技术的采用,有效地消除光谱干扰,提高选择性和灵敏度,而且仪器的体积结
光电倍增管作用
光电倍增管作用如下:光电倍增管作用是将微弱光信号转换成电信号的真空电子器件。光电倍增管用在光学测量仪器和光谱分析仪器中。它能在低能级光度学和光谱学方面测量波长200~1200纳米的极微弱辐射功率。闪烁计数器的出现,扩大了光电倍增管的应用范围。激光检测仪器的发展与采用光电倍增管作为有效接收器密切有关。
光电倍增管简介
光电倍增管是将微弱光信号转换成电信号的真空电子器件。光电倍增管用在光学测量仪器和光谱分析仪器中。它能在低能级光度学和光谱学方面测量波长200~1200纳米的极微弱辐射功率。闪烁计数器的出现,扩大了光电倍增管的应用范围。激光检测仪器的发展与采用光电倍增管作为有效接收器密切有关。电视电影的发射和图象
光电倍增管的特性
当光照射到光阴极时,光阴极向真空中激发出 光电子。这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。然后把放大后的电子用阳极收集作为信号输出。因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的 辐射能量的 光电探测器中,具有极高的灵敏度和极低的噪声。另
光电倍增管原理简介
光电倍增管建立在 外光电效应、二次电子发射和电子光学理论基础上,结合了高 增益、低噪声、高频率响应和大信号接收区等特征,是一种具有极高灵敏度和超快时间响应的光敏电真空器件,可以工作在紫外、可见和近红外区的光谱区。日盲紫外光电倍增管对日盲紫外区以外的可见光、近紫外等光谱辐射不灵敏,具有噪声低(暗电
光电倍增管的应用
由于光电倍增管增益高和响应时间短,又由于它的输出电流和入射光子数成正比,所以它被广泛使用在 天体光度测量和 天体分光光度测量中。其优点是:测量精度高,可以测量比较暗弱的天体,还可以测量天体光度的快速变化。天文测光中,应用较多的是锑铯光阴极的倍增管,如RCA1P21。这种光电倍增管的极大量子效率在
光电倍增管是什么?
光电倍增管是什么 光电倍增管是将微弱光信号转换成电信号的真空电子器件。光电倍增管用在光学测量仪器和光谱分析仪器中。它能在低能级光度学和光谱学方面测量波长200~1200纳米的极微弱辐射功率。闪烁计数器的出现,扩大了光电倍增管的应用范围。激光检测仪器的发展与采用光电倍增管作为有效接收器密切有关。电视
光电倍增管工作原理
光电倍增管工作原理:光电倍增管建立在外光电效应、二次电子发射和电子光学理论基础上,结合了高增益、低噪声、高频率响应和大信号接收区等特征,是一种具有极高灵敏度和超快时间响应的光敏电真空器件,可以工作在紫外、可见和近红外区的光谱区。日盲紫外光电倍增管对日盲紫外区以外的可见光、近紫外等光谱辐射不灵敏,具有
光电倍增管的过程
当光照射到光阴极时,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。然后把放大后的电子用阳极收集作为信号输出。因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光电探测器中,具有极高的灵敏度和极低的噪声。另外,光电倍
光电倍增管的过程
当光照射到光阴极时,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。然后把放大后的电子用阳极收集作为信号输出。因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光电探测器中,具有极高的灵敏度和极低的噪声。另外,光电倍
实验室光学仪器原子吸收光谱仪光电倍增管的结构
在原子吸收光谱仪中,光电倍增管主要用于将光信号转变成电信号。光电倍增管由一个带阳极的真空光电管,一组光敏电极(光阴极)和一组发射阴极(打拿极)组成。相对于光阴极,各打拿极正电势逐级增加。光电倍增管通常有十个电极,在特殊情况下,其电极总数可增至13个。从光阴极释放的一个光电子被第一打拿极吸引,并落在第
光电倍增管的工作原理
光电倍增管的工作原理是具有极高灵敏度和超快时间响应的光敏电真空器件,可以工作在紫外、可见和近红外区的光谱区。日盲紫外光电倍增管对日盲紫外区以外的可见光、近紫外等光谱辐射不灵敏。当光照射到光阴极时,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。然
光电倍增管的工作原理
光电倍增管是依据光电子发射、二次电子发射和电子光学的原理制成的、透明真空光电倍增管在全暗条件下,加工作电压时也会输出微弱电流,称为暗流。
端窗式光电倍增管(CPM)
端窗式光电倍增管(CPM),是一种新型超高灵敏的光探测器,它的阳极灵敏度比通用的光电倍增管PMT提高一个量级,达到10E7A/W,暗电流降低两个数量级,噪声电平长时间极端稳定。极低的暗电流导致比传统PMT更高的动态范围,而且扩展了探测应用范围,能够替代传统的光电倍增管(PMT)以及雪崩管(APD),
简述光电倍增管的原理
光电倍增管是一种真空光电器件,它的工作原理是建立在光电效应、二次电子发射和电子光学的理论基础上,它的工作过程是光子入射到光电阴极上产生光电子,光电子通过电子光学输入系统进入倍增系统,电子得到倍增,最后阳极把电子收集起来形成阳极电流或电压,因此,光电倍增管的作用不仅起转换作用,而且起了在管内把电流放大
光电倍增管的工作原理
光电倍增管的工作原理是具有极高灵敏度和超快时间响应的光敏电真空器件,可以工作在紫外、可见和近红外区的光谱区。日盲紫外光电倍增管对日盲紫外区以外的可见光、近紫外等光谱辐射不灵敏。当光照射到光阴极时,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。然
光电倍增管的运行特性
1.稳定性 光电倍增管的稳定性是由器件本身特性、工作状态和环境条件等多种因素决定的。管子在工作过程中输出不稳定的情况很多,主要有: a.管内电极焊接不良、结构松动、阴极弹片接触不良、极间尖端放电、跳火等引起的跳跃性不稳现象,信号忽大忽小。 b.阳极输出电流太大产生的连续性和疲劳性的不稳定现
关于光电倍增管的简介
光电倍增管是将微弱光信号转换成电信号的真空电子器件。光电倍增管用在光学测量仪器和光谱分析仪器中。它能在低能级光度学和光谱学方面测量波长200~1200纳米的极微弱辐射功率。闪烁计数器的出现,扩大了光电倍增管的应用范围。激光检测仪器的发展与采用光电倍增管作为有效接收器密切有关。电视电影的发射和图象
光电倍增管的工作原理
光电倍增管的工作原理是具有极高灵敏度和超快时间响应的光敏电真空器件,可以工作在紫外、可见和近红外区的光谱区。日盲紫外光电倍增管对日盲紫外区以外的可见光、近紫外等光谱辐射不灵敏。当光照射到光阴极时,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。然
光电倍增管的使用过程
基于外光电效应和 二次电子发射效应的电子真空器件。它利用二次电子发射使逸出的光电子倍增,获得远高于 光电管的灵敏度,能测量微弱的光信号。光电倍增管包括阴极室和由若干打拿极组成的二次发射倍增系统两部分。阴极室的结构与光阴极K的尺寸和形状有关,它的作用是把阴极在光照下由外光电效应(见 光电式传感器)
端窗式光电倍增管(CPM)优点
CPM特点:·超高的阳极灵敏度,在3000伏最大偏置电压下,增益达到10E8A/W;在2400伏时,典型增益为3x10E6A/W,比传统PMT超过一到两个数量级,比APD超过5个数量级;·极低的暗电流,典型值3pA@10E6增益,比传统的PMT降低了一到两个数量级,扩展了探测范围;·高动态范围;·非
光电倍增管闪烁计数器
1903年有人发现 α粒子照射在硫化锌粉末上可产生荧光的现象。1911年,卢瑟福将玻璃面上涂一层硫化锌的观测屏用于α 粒子散射实验,通过屏上的荧光闪烁,证实原子的核结构。 1929年科勒(L.R.Koehler)制成了第一种实用光电阴极——银氧铯阴极,从此出现了光电管(phototube)。193
关于光电倍增管的优点介绍
光电倍增管根据不同的应用有不同的尺寸大小,目前世界上最大的光电倍增管是20英寸,由日本滨松光子学株式会社(hamamatsu)研制生产,最初用于小柴昌俊的超级神冈探测器中,装入了11200个,并最终探测到了宇宙中微子,小柴昌俊因此获得了2002年诺贝尔物理学奖,而20寸光电倍增管也因此在2014
关于光电倍增管的过程介绍
当光照射到光阴极时,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。然后把放大后的电子用阳极收集作为信号输出。因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光电探测器中,具有极高的灵敏度和极低的噪声。另外,光
关于光电倍增管的缺点介绍
光电倍增管是依据光电子发射、二次电子发射和电子光学的原理制成的、透明真空壳体内装有特殊电极的器件。光阴极在光子作用下发射电子,这些电子被外电场(或磁场)加速,聚焦于第一次极。这些冲击次极的电子能使次极释放更多的电子,它们再被聚焦在第二次极。这样,一般经十次以上倍增,放大倍数可达到108~1010
端窗式光电倍增管(CPM)工作原理
CPM工作原理:类似于传统的光电倍增管(PMT),通过安装在端窗式光窗口内表面的一个半透明的光电阴极,接收非常微弱的入射光,把低电平的光转换成光电子。然后光电子从阴极到阳极,穿过一个窄的半导体通道,光电子每次撞击弯曲通道的内表面时,产生类似于光电倍增管的雪崩效应,发射出倍增的二次电子。这个效应沿着整