物理所等理论预言新型Kagome晶格量子自旋液体态
量子自旋液体是一种即使在零温下也不会发生对称性自发破缺的量子物质形态,其基本概念最早由诺贝尔获得者P. W. Anderson在1973年提出。之后,人们尝试利用自旋液体来解释高温超导的现象。近年来,随着实验上大量阻挫量子自旋材料的出现,找到具有自旋液体基态的材料变得越来越有可能。从实验和理论两个方面,量子自旋液体已成为凝聚态物理学量子多体问题研究的一个热点方向。 Kagome晶格作为一种强阻挫晶格,是实现量子自旋液体的理想模型。但对于一般的反铁磁海森堡模型,由于存在符号问题,人们无法利用量子蒙特卡洛方法数值研究系统基态的行为。2002年,Balents、Fisher和Girvin三位物理学家提出的所谓的BFG模型是一类可以实现量子自旋液体的模型,且该模型没有符号问题,可以展开大规模的量子蒙特卡洛研究,人们对于该模型取得了很多研究成果,尤其是零磁矩的情况。但如果对该模型加上一个Zeeman场,调节至1/6平均磁矩的时候,该......阅读全文
物理所等理论预言新型Kagome晶格量子自旋液体态
量子自旋液体是一种即使在零温下也不会发生对称性自发破缺的量子物质形态,其基本概念最早由诺贝尔获得者P. W. Anderson在1973年提出。之后,人们尝试利用自旋液体来解释高温超导的现象。近年来,随着实验上大量阻挫量子自旋材料的出现,找到具有自旋液体基态的材料变得越来越有可能。从实验和理论两
Kagome量子自旋液体分数化自旋激发获得新思路
量子自旋液体是一种新的物质形态,可用拓扑序的长程多体纠缠来描述。量子自旋液体备受关注,这是由于其在高温超导机制和量子计算中的广阔应用,更源于其背后深刻的物理机制。自旋1/2的Kagome晶格反铁磁体系具有强烈的几何阻挫和量子涨落,是可能存在量子自旋液体的典型模型。ZnCu3(OH)6Cl2是第一
物理所合作取得量子自旋液体研究新进展
量子自旋液体是诺贝尔获得者P. W. Anderson在1973年首次提出的一种即使在零温下也不会发生对称性自发破缺的量子态。高温超导发现之后,Anderson又尝试从量子自旋液体角度来理解高温超导的机理,由此进一步引发了对量子自旋液体的研究兴趣。近年来,随着大量强阻挫量子自旋材料的发现,对量子
物理所合作取得量子自旋液体研究新进展
量子自旋液体是诺贝尔获得者P. W. Anderson在1973年首次提出的一种即使在零温下也不会发生对称性自发破缺的量子态。高温超导发现之后,Anderson又尝试从量子自旋液体角度来理解高温超导的机理,由此进一步引发了对量子自旋液体的研究兴趣。近年来,随着大量强阻挫量子自旋材料的发现,对量子
物理所拓扑平带上的分数陈绝缘体理论研究取得进展
分数量子霍尔效应是凝聚态物理中的重要研究领域,其新奇现象表现为新形态的量子流体和带分数电荷的激发态。传统的分数量子霍尔效应一般考虑强外磁场、低温和连续介质的环境。其中普林斯顿的崔琦因为这方面的研究和其他科学家获得诺贝尔奖,物理所就有以崔琦命名的实验室。 从2011年开始,人们发
物理所首次观测到有能隙的自旋子
量子自旋液体是凝聚态物理学家追寻已久的新奇物质形态。它由诺贝尔奖得主P. W. Anderson在70年代首次提出,80年代末被用来尝试解释当时刚发现的高温超导现象。传统的物质形态可以用能带理论和对称性自发破缺理论来描述,而自旋液体作为没有对称性破缺的量子物质形态需要用新的理论框架来描述。这个新
福建物构所新型低维磁性材料研究获进展
由于自旋量子效应的存在,低维磁性材料会出现与三维磁性材料不一样的磁性基态。对于二维自旋体系,量子涨落和热涨落之间的竞争将主导磁相变行为,长程序反铁磁相变有可能克服量子涨落而出现。但是,包含三角自旋网格特别是笼目(kagome)晶格的磁性材料,强烈的几何阻挫和量子自旋涨落的作用会使长程有序的基态无
Nature-Physics亮点文章:发现具有负磁性的拓扑平带!
平带的重要性 在强关联体系中研究对称性破缺序与电子拓扑的相互作用,正逐渐衍生为基础科学的新前沿。对这些问题的深入系统研究,不仅可以帮助人们发展更先进的对基本物质态的认知,更会对新兴量子材料的实际应用带来不可或缺的知识储备。具有自旋轨道耦合的平坦能带一直是人们梦寐以求的电子态,因为它既具有强关联
物理所Kondo金属与亚铁磁绝缘体研究取得新进展
最近,中科院物理研究所/北京凝聚态物理国家实验室刘伍明研究组在几何阻挫系统中的量子相变研究中取得进展。他们利用原胞动力学平均场方法结合连续时间蒙特卡洛方法,研究了在非均匀性三角kagome格子中金属-绝缘体相变与磁性相变,获得了三角kagome格子随相互作用、温度、非均匀性变化的详细相
物理所等二维量子自旋液体动力学行为研究取得进展
量子自旋液体是存在于量子阻挫磁体中的一种新型物质形态,它的一个突出特点就是其中蕴含着各种分数化的元激发。然而,作为拓扑序的材料实现,量子自旋液体一直以来就因其不存在局域的可观测量而成为实验探测上的“痛点”。最近,由中国科学院物理研究所/北京凝聚态物理国家研究中心凝聚态理论与材料计算重点实验室博士
我国科学家发现自旋超固态巨磁卡效应
超固态是一种在接近绝对零度时涌现的新奇量子物态,兼具固体和超流体这两种看似矛盾的特征。超固态自20世纪70年代作为理论猜测提出以来,除了冷原子气的模拟实验外,科学家尚未在固体物质中找到超固态存在的可靠实验证据。中国科学院大学教授苏刚、中国科学院物理研究所研究员孙培杰、中国科学院理论物理研究员所李伟、
科学家发现自旋超固态巨磁卡效应
超固态是一种在接近绝对零度时涌现的新奇量子物态,兼具固体和超流体这两种看似矛盾的特征。超固态自20世纪70年代作为理论猜测提出以来,除了冷原子气的模拟实验外,科学家尚未在固体物质中找到超固态存在的可靠实验证据。中国科学院大学教授苏刚、中国科学院物理研究所研究员孙培杰、中国科学院理论物理研究员所李
科学家发现自旋超固态巨磁卡效应
超固态是一种在接近绝对零度时涌现的新奇量子物态,兼具固体和超流体这两种看似矛盾的特征。超固态自20世纪70年代作为理论猜测提出以来,除了冷原子气的模拟实验外,科学家尚未在固体物质中找到超固态存在的可靠实验证据。中国科学院大学教授苏刚、中国科学院物理研究所研究员孙培杰、中国科学院理论物理研究员所李伟、
物理所等发现自旋阻挫重费米子体系中的量子临界相
当一个二级相变通过非温度控制的外参量被连续压制到绝对零度附近时,体系会发生量子相变。发生量子相变的临界点,即量子临界点,是绝对零度条件下位于外参量轴上的一个点,通常可以通过调控压力、磁场等手段来获得。量子相变和有限温度下由热涨落控制的相变不同,其物理本质是基于海森堡不确定原理的量子涨落行为。量子
强磁场下关联电子晶体研究取得进展
中国科学院合肥物质科学研究院强磁场科学中心盛志高、陆轻铀合作团队依托超导SM2组合显微测试系统,在氧化物关联电子晶体研究中取得进展,工作发表在期刊ACS Appl. Mater. Interfaces 10, 23, 20136(2018)上。 固态物质既有玻璃态又有晶体态。玻璃态是无序的,长
“原子乐高”量子模拟获重大突破
南京大学物理学院教授缪峰联合南京理工大学理学院教授程斌团队通过“原子乐高”的方式,搭建了基于转角石墨烯莫尔超晶格体系的SU(4)同位旋-扩展哈伯德模型量子模拟器,首次观测到钉扎在莫尔超晶格上的一种特殊的电子晶体态:广义同位旋维格纳晶体。 研究团队通过垂直电场对电子关联强度的原位调节作用,实
人类首次直接“看到”量子自旋效应
据新加坡国立大学(NUS)官网近日报道,该校科学家领导的国际科研团队,首次直接“看到”拓扑绝缘体和金属中电子的量子自旋现象,为未来研发先进的量子计算组件以及设备铺平了道路,距离实现量子计算又近了一步。 量子计算机目前仍处于研发的初期阶段,但其展现出的计算速度已经是传统技术的数百万倍,其非凡的处
室温下量子材料实现“自旋”控制
科技日报北京8月16日电 (记者张佳欣)据《自然》杂志16日报道,英国剑桥大学领导的一个国际研究团队找到了一种控制有机半导体中光和量子“自旋”相互作用的方法,即使在室温下也能发挥作用,为潜在的量子应用开辟了新前景。几乎所有量子技术都涉及自旋。电子运动时通常会形成稳定的电子对,一个电子自旋向上,一个电
零下273.056摄氏度-我国科学家Nature发文实现无液氦极低温制冷
大约一个世纪前,人类首次将氦气液化,开启了利用液氦进行极低温制冷的新纪元。随后,极低温制冷技术被广泛应用于大科学装置、深空探测、材料科学、量子计算等国家安全和战略高技术领域。 然而,用于极低温制冷的氦元素存在供应短缺等问题。如何才能不用氦元素实现极低温制冷,一直是科学家要着力突破的难题。 1
《自然》:复旦观测到量子自旋液体分数化激发
复旦大学物理学系赵俊课题组与陈钢课题组及合作者利用中子散射技术在量子自旋液体候选材料YbMgGaO4中首次观测到了分数化自旋激发----完整的自旋子激发谱,这一结果为该体系中量子自旋液体态的实现提供了强有力的证据。12月5日,相关研究成果在线发表于《自然》(Nature)杂志。 据悉,复旦大
“基于核自旋量子调控的固态量子计算研究”通过验收
10月22日,由中国科学技术大学杜江峰教授主持的国家重大科学研究计划“基于核自旋量子调控的固态量子计算研究”项目课题结题验收会在合肥召开。中科院理论物理所于渌院士、中科院武汉物数所叶朝辉院士、清华大学朱邦芬院士等担任课题结题验收组专家。科技部基础司、中科院基础局相关领导以及中国科大校长侯建国等出
学家实验模拟出量子自旋液体
1965年诺贝尔物理学奖得主菲利普·沃伦·安德森在1973年首次提出一种新物质状态——量子自旋液体。其不同性质在高温超导和量子计算机等量子技术领域有着广阔的应用前景。但问题在于,从未有人见过这种物质状态,至少近50年来一直如此。如今,哈佛大学领导的一个物理学家团队表示,他们终于通过实验模拟并分析
美揭示量子自旋液体的存在机理
据美国物理学家组织网8月15日报道,美国马里兰大学伯克分校联合量子研究所(JQI)、美国国家标准与技术研究院(NIST)和乔治敦大学的科学家揭示了物质的量子状态——自旋液体的存在机理,有望加深科学家对超导性的理解。相关研究结果发表在8月12日出版的《物理学评论快报》上。 自旋
量子材料内首次测量电子自旋
原文地址:http://news.sciencenet.cn/htmlnews/2023/6/502752.shtm一个国际研究团队首次成功测量了一类新型量子材料内的电子自旋,这一成就有望彻底改变未来量子材料的研究方式,为量子技术的发展开辟新途径,并在可再生能源、生物医学、电子学、量子计算机等诸多领
“混血”纳米设备可控制量子比特自旋
美国科学家使用其研发的独特的金属—半导体“混血”纳米设备,演示了一种新的光和物质的相互作用,且在仅为几纳米的胶体纳米结构中首次实现了对量子比特自旋进行完全的量子控制,这些新进展朝着制造出量子计算机迈开了更加关键的一步。该研究成果发表在7月1日的《自然》杂志上。 马里兰大学纳
物理所预言新型二维大能隙拓扑绝缘体
众所周知,二维拓扑绝缘体的体内是绝缘的,而其边界是无能隙的金属导电态。且这种金属态中存在自旋-动量的锁定关系,相反自旋的电子向相反的方向运动,由于受到时间反演不变性的保护,它们之间的散射是禁止的,因此是自旋输运的理想“双向车道”高速公路,可用于新型低能耗高性能自旋电子器件。当前实验证实的二维拓扑
第三种基本磁性状态量子自旋液获实验验证
据物理学家组织网近日报道,美国麻省理工大学通过实验验证了第三种基本磁性状态——量子自旋液(QSL),这也与早期的理论预测相符。相关论文发表在最近出版的《自然》杂志上。 自然界有两种基本的磁性状态,磁性和反磁性。磁性如条形磁铁或指南针中表现的那样,反磁性是指金属或合金内部离子的磁场彼此抵消,
物理所一维光学超晶格系统的拓扑性质研究取得进展
拓扑绝缘体代表一种全新的量子物态:它的体态是有能隙的绝缘体,而其表面态则为没有能隙的金属态。由于其在自旋电子学和量子计算等领域的潜在应用,拓扑绝缘体的研究近年来吸引了来自物理学不同领域的极大关注和研究。拓扑绝缘体通常被认为只在二维和三维系统里才会出现。一个有意思的问题是:
全新磁性材料展现量子自旋液态
据物理学家组织网22日报道,一个国际科研团队在寻找新的物质形态方面取得重大突破:他们证明,与钙钛矿相关的金属氧化物TbInO3展现出量子自旋液态,这是科学家很长时间以来一直在追寻的一种物质形态,有望应用于量子计算等领域。 40多年前,诺贝尔物理学奖得主菲利普·安德森从理论上提出了量子自旋液态。
韩国实现4D观察量子自旋波
韩国浦项科技大学浦项加速器实验室(PAL)科研团队利用第四代线性同步加速器(X射线自由电子激光器)成功实现了对量子自旋波的4D观察。 随着大数据和人工智能的发展,硬盘等海量存储设备变得更加重要。为提高磁性存储设备的容量和处理速度,需要一种快速控制磁性材料特性的技术。科研团队的核心技术就是利用共