高速逆流色谱常用基本溶剂体系

高速逆流色谱常用基本溶剂体系表被分离物质种类基本两相溶剂体系辅助溶剂非极性或弱极性物质正庚(己)烷-甲醇氯烷烃正庚(己)烷-乙睛氯烷烃正庚己烷-甲醇(或乙睛)-水氯烷烃中等极性物质氯仿-水甲醇、正丙醇、异丙醇乙酸乙酯-水正己烷、甲醇、正丁醇极性物质正丁醇-水甲醇、乙酸上表中是根据被分离物质的极性列出一些基本的可供参考的溶剂体系,它包括非水体系和含水体系。溶剂系统的选择对于HSCCC分离十分关键。遗憾的是到目前为止溶剂系统的选择还没有充分的理论依据,而是根据实际积累的丰富经验来选择。通常来说,溶剂系统应该满足以下要求:溶剂系统不会造成样品的分解或变性样品中各组分在溶剂系统中有合适的分配系数,一般认为分配系数在0.2-5的范围内是较为合适的,并且各组分的分配系数值要有足够的差异,分离因子最好大于或等于1.5;溶剂系统不会干扰样品的检测;为了保证固定相的保留率不低于50%,溶剂系统的分层时间不超过30秒;上下两相的体积比合适,以免浪费......阅读全文

高速逆流色谱的技术原理

  HPCPCTM是一个新的液相色谱技术,利用液液两相的逆流分配,在没有固体填料的情况下,执行复杂的化学物质的混合物分离。它以液体溶剂替代了传统的制备型高效液相色谱填充柱为固定相和另一液体溶剂做流动相在一个高性能的离心系统分区进行操作。不需使用固态固定相,而是利用离心力产生的恒定力场将固定相保留在由

高速逆流色谱的原理概述

  高速逆流色谱的原理概述   HSCCC利用一种特殊的流体动力学(单向流体动力学平衡)现象。具体表现为一根100多米长的螺旋空管,注入互不相溶的两相溶剂中的一相作为固定相,然后作行星运动;同时不断注入另一相(流动相),由于行星运动产生的离心力场使得固定相保留在螺旋管内,流动相则不断穿透固定相;这

高速逆流色谱的原理概述

  高速逆流色谱的原理概述   HSCCC利用一种特殊的流体动力学(单向流体动力学平衡)现象。具体表现为一根100多米长的螺旋空管,注入互不相溶的两相溶剂中的一相作为固定相,然后作行星运动;同时不断注入另一相(流动相),由于行星运动产生的离心力场使得固定相保留在螺旋管内,流动相则不断穿透固定相;这

高速逆流色谱应用研究

摘 要 本文介绍了高速逆流色谱技术的工作原理、特点,综述了近年来高速逆流色谱(HSCCC)在分离制备天然产物、蛋白质、抗生素、无机物等领域的进展,尤其是近几年在中药尤其是植物药有效成分分离纯化方面的应用情况,总结了适用于HSCCC的溶剂体系,并展望了HSCCC与质谱、蒸发光散射联用等新技术的应用前景

高速逆流色谱的研究热点

  近年来,溶剂体系的选择范围越来越宽泛,有人提出用超临界二氧化碳做流动相,利用它的高扩散性、低粘度、流体特性及环境友好等其他溶剂不可比拟的优势分离化合物,还有人提出用制冷剂做流动相的可能性。还有人提出将三相溶剂体系用于高速逆流色谱分离中,可以对宽极性范围的样品进行很好的分离。目前三相溶剂还只用于标

高速逆流色谱的研究发展

  溶剂体系的选择范围越来越宽泛,有人提出用超临界二氧化碳做流动相,利用它的高扩散性、低粘度、流体特性及环境友好等其他溶剂不可比拟的优势分离化合物,还有人提出用制冷剂做流动相的可能性。还有人提出将三相溶剂体系用于高速逆流色谱分离中,可以对宽极性范围的样品进行很好的分离。三相溶剂还只用于标准品混合物的

高速逆流色谱应用领域

高速逆流色谱应用领域( 1 )天然产物已知有效成分的分离纯化( 2 )化学合成物质的分离纯化( 3 )中药一类、五类新药的开发( 4 )中药指纹图谱和质量控制研究( 5 )抗生素的分离纯化( 6 )天然产物未知有效成分的分离纯化(新化合物开发)( 7 )海洋生物活性成分的分离纯化( 8 )放射性同位

高速逆流色谱技术发展

高速逆流色谱技术发展:二十世纪六十年代,首先在日本,随后在美国国家医学研究院发现了一种有趣的现象:即互不相溶的两相溶剂在绕成螺旋形的小孔径管子里分段割据,并能实现两溶剂相之间的逆向对流。Ito及其后来者在此基础上研究并设计制造出了一系列逆流色谱装置,早期的是封闭型的螺旋管行星式离心分离仪CPC(co

高速逆流色谱仪概述

  高速逆流色谱法(High-speed Countercurrent Chromatography,简称HSCCC),于1982年由美国国立卫生院Ito博士研制开发的一种新型的、连续高效的液液分配色谱技术,与其它色谱技术不同的是它不需任何固态载体,因此能避免固相载体表面与样品发生反应而导致样品的污

高速逆流色谱的系统结构

图A,调整逆流色谱基本系统结构  高速逆流色谱技术的基本系统结构如上图A所示,主要由输液泵、进样阀、螺旋管式离心分离管、检测器等组成。由于其操作压力并不高,用普通的中低压泵即可。进样可用带有样品环管的六通进样阀进样。样品的分离是在多层螺旋管式离心分离管内完成。检测器与液相色谱的检测器相同,如紫外检测

高速逆流色谱的应用前景

近年来, 分析型高速逆流色谱的柱系统越来越向微型化发展, 如螺旋管柱体积可小到3—5mL, 柱内径小到0.3—0.4mm, 并可以通过各种接口技术与多种检测器和化合物结构分析技术相结合。尤其是高速逆流色谱与MS的联用,把高速逆流色谱分离的灵活性、多样性与MS的高灵敏度检测和结构分析特性良好地结合在一

高速逆流色谱仪介绍

逆流色谱技术是一种应用在化学分离分析领域中的技术,其原理是用充满两相溶剂的螺旋管作为分离单元在离心力场中按一定规律运动,当被分离的混合物通过分离单元时,由于不同物质在两相溶剂中具有不同的分配特性将会产生物质的分离排列。   一般逆流色谱仪中,分离单元不仅围绕公转中心做公转运动,同时也做自转运动,呈行

影响高速逆流色谱的因素

影响高速逆流色谱的因素1.固定相的保留值在逆流色谱中,留在管中固定相的量是影响溶质峰分离度的一个重要因素,高保留量将会大大改进峰分离度。仪器对保留值的影响(外因) 研究表明:螺旋管支持件的自转半径r与公转半径R之比B值是一个影响两相互不混溶溶剂在旋转螺旋管内保留的关键因素。用大直径的支持件使值进一步

高速逆流色谱技术的缺点

虽然高速逆流色谱有很多优势特点,而且是其它方法不能替代的。但不可避免的,在某些方面还是会存在一些缺陷。高速逆流色谱的应用可能会受到如下因素的制约。一,在溶剂体系的选择上还没有非常系统、成熟的理论来指导,虽然已经有学者建立了几种经验性的溶剂系统筛选方法,但这些方法均为经验性的规律总结,如何选择一种具有

逆流色谱法溶剂体系选择及组分分配系数的测定

  选取一个合适的溶剂体系步骤:(1) 通过TLC或者HPLC预测被分离物质的极性。(2) 根据极性选择合适的分离体系。(3) 如果得知与被分离物质极性相似物质的分离体系,可以借鉴。在选择溶剂系统时就需要测定组分的分配系数, 而分配系数测定常采用高效液相色谱法或薄层色谱法,这两种方法都能够较准确地测

高速逆流色谱的技术发展

  二十世纪六十年代,首先在日本,随后在美国国家医学研究院发现了一种有趣的现象:即互不相溶的两相溶剂在绕成螺旋形的小孔径管子里分段割据,并能实现两溶剂相之间的逆向对流。Ito及其后来者在此基础上研究并设计制造出了一系列逆流色谱装置,早期的是封闭型的螺旋管行星式离心分离仪CPC(coil planet

高速逆流色谱仪的优势

高速逆流色谱(high-speed countercurrent chromatography,简称HSCCC) 是一种较新型的液—液分配色谱,由美国国立健康研究院(National Institute of Health, U.S.A.)Ito博土zui先研制开发后由北京市新技术应用研究所在国内开

高速逆流色谱的分配系统

  溶剂系统的选择是同时选择色谱分离过程的两相,是对样品成功分离的关键所在,而样品中各组分的分配系数决定着这种溶剂系统是否合适,因此分配系数的测定是选择溶剂系统的重要环节。分配系数的测定多采用薄层色谱法、毛细管电泳法、HPLC法、生物活性分配比率法及分析型HSCCC法。

高速逆流色谱技术的优势特点

虽然高速逆流色谱技术距今只有20多年的发展历史,但作为一种具有独特优势的液-液分配色谱技术,高速逆流色谱的发展是相当的迅速,相关技术及色谱装置也越来越全面和完善,在天然产物有效成分的分离纯化领域中有着独特的优势并且获得了广泛的应用。逆流色谱分离技术在黄酮类化合物分离纯化的应用中几乎没有限制,可以用于

高速逆流色谱的技术原理介绍

  HPCPCTM是一个新的液相色谱技术,利用液液两相的逆流分配,在没有固体填料的情况下,执行复杂的化学物质的混合物分离。它以液体溶剂替代了传统的制备型高效液相色谱填充柱为固定相和另一液体溶剂做流动相在一个高性能的离心系统分区进行操作。不需使用固态固定相,而是利用离心力产生的恒定力场将固定相保留在由

高速逆流色谱的应用与发展

从重液滴通过另一液体滴落,溶质在两相中间实现分配的原理出发,进行设备与过程的研发转变,20世纪60年代发明了连续液/液的高速逆流色谱(High-speed Countercurrent Chromatography,HSCCC)技术,目前已广泛应用于生物、医药、天然产物、环境分析、食品等领域的分离、

高速逆流色谱仪的优势

高速逆流色谱(high-speed countercurrent chromatography,简称HSCCC) 是一种较新型的液—液分配色谱,由美国国立健康研究院(National Institute of Health, U.S.A.)Ito博士最先研制开发后由北京市新技术应用研究所在国

如何选型高速逆流色谱仪

高速逆流色谱仪是一种新的液相色谱技术,利用液液两相的逆流分配,在没有固体填料、不需使用固态固定相的情况下,而是利用离心力产生的恒定力将固定相保留在由管道连接的一系列的腔体中,实现复杂化学物质的混合物分离。它以液体溶剂为固定相,螺旋柱在行星运动时产生的离心力,使互不相溶的两相不断互相混合,同时保留其中

简介高速逆流色谱的研究热点

  近年来,溶剂体系的选择范围越来越宽泛,有人提出用超临界二氧化碳做流动相,利用它的高扩散性、低粘度、流体特性及环境友好等其他溶剂不可比拟的优势分离化合物,还有人提出用制冷剂做流动相的可能性。还有人提出将三相溶剂体系用于高速逆流色谱分离中,可以对宽极性范围的样品进行很好的分离。目前三相溶剂还只用于标

简介高速逆流色谱技术的原理

  高速逆流色谱法是建立在单向性流体动力平衡体系之上的一种逆流色谱分离方法,它是在研究旋转管的流体动力平衡时偶然发现的。当螺旋管在慢速转动时,螺旋管中的两相都从一端分布到另一端。用某一相作移动相从一端向另一端洗脱时,另一相在螺旋管里的保留值大约50%,但这一保留量会随着移动相流速的增大而减小,使分离

高速逆流色谱仪的介绍

逆流色谱技术是一种应用在化学分离分析领域中的技术,其原理是用充满两相溶剂的螺旋管作为分离单元在离心力场中按一定规律运动,当被分离的混合物通过分离单元时,由于不同物质在两相溶剂中具有不同的分配特性将会产生物质的分离排列。一般逆流色谱仪中,分离单元不仅围绕公转中心做公转运动,同时也做自转运动,呈行星式运

高速逆流色谱的发展史

高速逆流色谱的发展史1.20世纪70年代,出现了液滴逆流色谱(DCCC)特点:(1)流体静力学原理(Hydrostatic equilibrium system,HSES)(2)分离时间过长、连接处容易出现渗漏等2.20世纪70年代出现了离心分配色谱仪(Centrifugal partition c

高速逆流色谱的应用领域

  ( 1 )天然产物已知有效成分的分离纯化  ( 2 )化学合成物质的分离纯化  ( 3 )中药一类、五类新药的开发  ( 4 )中药指纹图谱和质量控制研究  ( 5 )抗生素的分离纯化  ( 6 )天然产物未知有效成分的分离纯化(新化合物开发)  ( 7 )海洋生物活性成分的分离纯化  ( 8

如何选型高速逆流色谱仪?

高速逆流色谱仪是一种新的液相色谱技术,利用液液两相的逆流分配,在没有固体填料、不需使用固态固定相的情况下,而是利用离心力产生的恒定力将固定相保留在由管道连接的一系列的腔体中,实现复杂化学物质的混合物分离。它以液体溶剂为固定相,螺旋柱在行星运动时产生的离心力,使互不相溶的两相不断互相混合,同时保留其中

高速逆流色谱的发展趋势

  为了克服HSCCC理论研究相对滞后的不足,有不少研究人员正从事理论研究,试图建立完善的理论基础来指导溶剂体系的选择,以期使HSCCC尽快从一种分离技术发展成为一门分离科学。HSCCC一种独特的不用固态载体的液液分配色谱技术,是一种能实现连续有效分离的实用分离制备技术,能采用多种多样的溶剂系统对任