辛勤:耕耘催化和光谱50载搭建教育平台再促创新

第一届全国分子光谱学术会议1979年在桂林举办,今年适逢光谱会议四十年。回顾四十年来我国光谱事业的发展历程,凝聚着老一辈科学家的开创、坚持和奉献精神。日前,分析测试百科网来到大连化学物理研究所,采访到在现代催化研究和分子光谱领域的著名学者辛勤研究员。通过辛勤研究员的回顾,希望能帮助当今的研究者们更好地了解我国光谱事业的发展史,并一同展望更美好的明天。 中国科学院大连化学物理研究所 辛勤研究员从表面催化到分子光谱 1962年吉林大学毕业后,辛勤被分配到大连化学物理研究所张大煜院士的课题组。张大煜院士是催化界的泰斗和元老,当时兼任所长、室主任和课题组长。六十年代为响应国家向科学进军、强调基础理论研究的号召,辛勤开始做催化剂表面吸附物种的相关研究,而分子光谱是研究表面吸附的重要手段,辛勤也从了解开始,到与分子光谱结下了不解之缘。“我当时刚刚大学毕业,化物所分析室设立有分子光谱组,组中戴亮、关德俶、李长志、胡皆汉等都是在分子光谱......阅读全文

辛勤:耕耘催化和光谱50载-搭建教育平台再促创新

  第一届全国分子光谱学术会议1979年在桂林举办,今年适逢光谱会议四十年。回顾四十年来我国光谱事业的发展历程,凝聚着老一辈科学家的开创、坚持和奉献精神。日前,分析测试百科网来到大连化学物理研究所,采访到在现代催化研究和分子光谱领域的著名学者辛勤研究员。通过辛勤研究员的回顾,希望能帮助当今的研究者们

讣告:中科院大连化物所辛勤研究员逝世-享年81岁

  讣告:2020年6月24日22时46分,中国科学院大连化学物理研究所辛勤研究员走完了光辉且实干的一生,享年81岁。  辛勤,中科院大连化学物理研究所研究员、教授、博士生导师。1962年毕业于吉林大学化学系。催化基础国家重点实验室学委会副主任(1992-1997),中国化学会催化专业委员会秘书长(

什么叫分子光谱

分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱).分子光谱与分子绕轴的转动、分子中原子在平衡位置的振动和分子内电子的跃迁相对应.分子能级之间跃迁形成的发射光谱和吸收光谱.分子光谱非常丰富,可分为纯转动光谱、振动 - 转动光谱带和电子光谱带.

什么叫分子光谱?

  分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱)。分子光谱与分子绕轴的转动、分子中原子在平衡位置的振动和分子内电子的跃迁相对应。   分子能级之间跃迁形成的发射光谱和吸收光谱。分子光谱非常丰富,可分为纯转动光谱、振动  -转动光谱带和电子光谱带。

什么叫分子光谱

分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱).分子光谱与分子绕轴的转动、分子中原子在平衡位置的振动和分子内电子的跃迁相对应.分子能级之间跃迁形成的发射光谱和吸收光谱.分子光谱非常丰富,可分为纯转动光谱、振动 - 转动光谱带和电子光谱带.

分子光谱的分类

  利用分子 能级 之间 跃迁 方向,可以将分子光谱分为 发射光谱 和 吸收光谱 。  发射光谱  发射光谱是指样品本身产生的光谱被检测器接收。样品本身被激发,然后回到基态,发射出特征光谱。发射光谱一般没有光源,如果有光源那也是作为波长确认之用。在测定时该光源也肯定处于关闭状态。  吸收光谱  吸收

分子光谱的作用

  分子光谱是提供分子内部信息的主要途径,根据分子光谱可以确定分子的 转动惯量、分子的 键长和 键强度以及分子 离解能等许多性质,从而可推测 分子的结构。  分子光谱学曾对物质结构的了解和量子力学的发展起了关键性作用;而现在,分子光谱学的成果对天体物理学、等离子体和激光物理学有着极重要的意义。光谱学

分子光谱有哪些?

前面我们已经分享了包括紫外、红外、拉曼等光谱,今天就说说分子光谱中最著名的四个分析方法“分子光谱F4!”   ”   作为光谱分析的一个重要分支,分子光谱是分析化学工作者常用的一种获得物质定量和定性信息的手段,因其测试简单且结构信息丰富,在生产加工和科研中发挥着举足轻重的

分子光谱有哪些?

  前面我们已经分享了包括紫外、红外、拉曼等光谱,今天就说说分子光谱中最著名的四个分析方法“分子光谱F4!”  ”  作为光谱分析的一个重要分支,分子光谱是分析化学工作者常用的一种获得物质定量和定性信息的手段,因其测试简单且结构信息丰富,在生产加工和科研中发挥着举足轻重的作用。前面我们已经分享了包括

荧光光谱属于分子光谱吗

根本差别在于激发基态原子的外层电子跃迁的方式,发射光谱属于热致激发,即基态原子吸收热量后,其外层电子跃迁致较高能级,然后跃迁回较低能态发射的特征谱线;分子荧光则是属于光致激发,基态原子受光辐射后,其外层电子跃迁致较高能级,然后跃迁回较低能态发射的特征谱线。

分子光谱有哪些分类?

分子能级之间跃迁形成的发射光谱和吸收光谱。分子光谱非常丰富,可分为纯转动光谱、振动-转动光谱带和电子光谱带。分子的纯转动光谱由分子转动能级之间的跃迁产生,分布在远红外波段,通常主要观测吸收光谱;振动-转动光谱带由不同振动能级上的各转动能级之间跃迁产生,是一些密集的谱线,分布在近红外波段,通常也主要观

分子光谱技术应用现状

分子光谱分析仪使用情况调查饼图   分子光谱仪和液相色谱仪、气相色谱仪均为分析和生命科学实验室的常用分析工具。紫外-可见和红外这类分子光谱技术通常作为检测器集成在液相色谱和气相色谱仪器上;在许多质量控制和研发实验室中,分析者也会单独(或离线)地 使用分子光谱设备作为补充工具。   分子光谱测

分子光谱的主要作用

分子光谱是提供分子内部信息的主要途径,根据分子光谱可以确定分子的转动惯量、分子的键长和键强度以及分子离解能等许多性质,从而可推测分子的结构。分子的内部运动状态发生变化所产生的吸收或发射光谱(从紫外到远红外直至微波谱)。分子运动包括整个分子的转动,分子中原子在平衡位置的振动以及分子内电子的运动,因此,

关于分子光谱的作用介绍

  分子光谱是提供分子内部信息的主要途径,根据分子光谱可以确定分子的转动惯量、分子的键长和键强度以及分子离解能等许多性质,从而可推测分子的结构。  分子的内部运动状态发生变化所产生的吸收或发射光谱(从紫外到远红外直至微波谱)。分子运动包括整个分子的转动,分子中原子在平衡位置的振动以及分子内电子的运动

简述分子光谱的分类介绍

  分子能级之间跃迁形成的发射光谱和吸收光谱。分子光谱非常丰富,可分为纯转动光谱、振动  -转动光谱带和电子光谱带。分子的纯转动光谱由分子转动能级之间的跃迁产生,分布在远红外波段,通常主要观测吸收光谱;振动  -转动光谱带由不同振动能级上的各转动能级之间跃迁产生,是一些密集的谱线,分布在近红外波段,

分子光谱的分类和作用

分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱)。分子光谱与分子绕轴的转动、分子中原子在平衡位置的振动和分子内电子的跃迁相对应 。分类分子能级之间跃迁形成的发射光谱和吸收光谱。分子光谱非常丰富,可分为纯转动光谱、振动 - 转动光谱带和电子光谱带。分子的纯转动光谱由分

分子光谱的背景及分类

  背景  原子光谱的特征是线状光谱,一个线系中各谱线间隔都较大,只在接近线系极限处越来越密,该处强度也较弱;若原子外层电子数目较少,谱线系也为数不多.分子光谱的一般分布与原子光谱不同,许多谱线形成一段一段的密集区域成为连续带状,称为光谱带.所以分子光谱的特征是带光谱.它的波长分布范围很广,可出现在

关于分子光谱的基本介绍

  分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱)。分子光谱与分子绕轴的转动、分子中原子在平衡位置的振动和分子内电子的跃迁相对应。

分子光谱是如何产生的

分子光谱是分子中电子能级,振动和转动能级的变化产生的,表现为带光谱。属于这类分析方法的有,紫外可见分光光度法(UV-Vis),红外光谱法(IR)分子荧光光谱法(MFS)和分子磷光光谱法(MPS),核磁共振与顺磁共振波谱(N)等。样品本身被激发,然后回到基态,发射出特征光谱。发射光谱一般没有光源,如果

分子光谱的分类和作用

分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱)。分子光谱与分子绕轴的转动、分子中原子在平衡位置的振动和分子内电子的跃迁相对应。分类分子能级之间跃迁形成的发射光谱和吸收光谱。分子光谱非常丰富,可分为纯转动光谱、振动 - 转动光谱带和电子光谱带。分子的纯转动光谱由分子

分子光谱是如何产生的

分子光谱是分子中电子能级,振动和转动能级的变化产生的,表现为带光谱。属于这类分析方法的有,紫外可见分光光度法(UV-Vis),红外光谱法(IR)分子荧光光谱法(MFS)和分子磷光光谱法(MPS),核磁共振与顺磁共振波谱(N)等。样品本身被激发,然后回到基态,发射出特征光谱。发射光谱一般没有光源,如果

什么是分子光谱法

分子光谱法包括一下几种方法:一、紫外-可见吸收光谱法紫外可见吸收光谱法是研究分子吸收190-750nm波长范围内的吸收光谱。紫外可见吸收光谱主要产生于分子中价电子在电子能级间的跃迁,是研究物质电子光谱的分析方法,通过测定分子对紫外可见光的吸收,可以鉴定和测定大量的无机化合物和有机化合物。二、红外吸收

分子光谱的分类及作用

  分类  利用分子 能级 之间 跃迁 方向,可以将分子光谱分为 发射光谱 和 吸收光谱 。  发射光谱  发射光谱是指样品本身产生的光谱被检测器接收。样品本身被激发,然后回到基态,发射出特征光谱。发射光谱一般没有光源,如果有光源那也是作为波长确认之用。在测定时该光源也肯定处于关闭状态。  吸收光谱

福州光谱会闭幕-第20届分子光谱学术会2018年在青岛召开

  分析测试百科网讯 2016年10月27-30日,第十九届全国分子光谱学学术会议暨2016年光谱年会在福州召开,会议由中国光学学会和中国化学会主办,中国科学院福建物质结构研究所、福州大学和闽江学院联合承办。经过充分的交流和学习,10月30日,大会迎来了闭幕式。  闭幕式由北京师范大学谢孟峡教授主持

带你认识分子光谱F4

前面我们已经分享了包括紫外、红外、拉曼荧光等光谱,今天就说说分子光谱中最著名的四个分析方法,分子光谱F4! 作为光谱分析的一个重要分支,分子光谱是分析化学工作者常用的一种获得物质定量和定性信息的手段,因其测试简单且结构信息丰富,在生产加工和科研中发挥着举足轻重的作用。前面我们已经分享了包括

即时播报:开幕式上胡鑫尧教授代表老专家发言

     第十五届分子光谱学学术会议的第一个高潮部分,是由到场嘉宾为光谱界的老专家颁发纪念牌并合影留念。主持人唐伟教授激动地说:“三十年来,为了中国光谱事业的发展,我国光谱界的前辈们做出了不懈的努力,让我们大家共同记住为中国光谱事业发展做出重要贡献的前辈们的名字吧!”这时,大屏幕上打

分子光谱发展迅猛-拉曼光谱大行其道

  分析测试百科网讯 2019年7月23日,天美(中国)科学仪器有限公司和英国爱丁堡仪器公司在北京发布了新产品——显微共焦拉曼RM5(相关报道:匠心力作 天美、爱丁堡携手发布显微拉曼新品RM5)。在发布会之后,厦门大学化学系教授任斌、吉林大学超分子结构与材料国家重点实验室教授赵冰、中山大学材料科学与

BCEIA-2015:分子光谱仪器大盘点

  分析测试百科网讯 2015年10月27日,国内分析测试行业影响力最大的展会2015 BCEIA在北京国家会议中心举办。作为业内规模和质量最高的盛会之一,本届展览会共有461家厂商参展,展出当今国内外分析测试领域的前沿

李灿院士寄语全国分子光谱会议40年(一)-与会议的缘分

  导读:第二十届全国分子光谱学学术会议暨2018年光谱年会将于2018年10月19日-22日在青岛召开(会议主页:http://www.sinospectroscopy.org.cn/meeting/index.php?mid=23 ),本次会议适逢全国光谱学学术会议40年。为庆祝光谱会议及我国光

量子化学和分子光谱的关系

  分子光谱可以通过量子化学计算。  量子化学:quantum chemistry,是理论化学的一个分支学科,是应用量子力学的基本原理和方法研究化学问题的一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分子与分子之间的相互作用;分子与分子之间的相互碰撞和相互反应等问题