青岛能源所发布首台单细胞拉曼分选及测序耦合系统

10月20日,在第二十届全国分子光谱学学术会议暨2018年光谱年会上,中国科学院青岛生物能源与过程研究所发布了自主研发的单细胞拉曼分选及测序耦合系统(RACS-SEQ)。该系统无需标记即可获知细胞种系发生、生理状态及所处的微环境变化等关键表型,并在单细胞水平精度对接表型组与基因组。 RACS-SEQ通过拉曼组(Ramanome)分析原理、拉曼光镊液滴单细胞分选(RAGE)、流式微液滴单细胞拉曼分选(RADS)等关键器件的创新,在单细胞水平实现了非标记式拉曼表型识别与功能分选,为单细胞生物学研究提供了崭新的整体解决方案。该系统以免标多维的表型组识别、精准快捷的单细胞获取,以及高效低噪的核酸扩增等为三大特色,具有单细胞拉曼成像、表型组识别、功能分选以及测序文库制备等四大功能。此外,系统还包括拉曼光镊液滴单细胞分选芯片、单细胞全基因组扩增试剂盒、单细胞拉曼耐药性快检试剂盒等附件。 RACS-SEQ搭载了自主研发的“拉曼组分析三......阅读全文

我国首台活体单细胞拉曼分选仪成功问世

我国首台活体单细胞拉曼分选仪成功问世 将广泛应用于生物技术、食品检测和药物研究等  近日,中科院青岛生物能源与过程研究所功能基因组团队与北京惟馨雨生物科技公司联合承担的科技部创新方法工作专项——“拉曼光钳筛选新方法在活体单细胞高通量分离中的应用”通过了评审验收,这标志着全球首台活体单细胞拉曼分选仪

紫外拉曼与共振拉曼原理

荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300nm-700nm区域,或者更长波长区域。而在紫外区的某个波  紫外

紫外拉曼与共振拉曼原理

荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300nm-700nm区域,或者更长波长区域。而在紫外区

紫外拉曼与共振拉曼原理

  荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300nm-700nm区域,或者更长波长区域。而在紫外区的某个波

单细胞拉曼光谱助力揭示持留菌的代谢特征

  近期,中国科学院青岛生物能源与过程研究所与香港大学合作,利用单细胞拉曼光谱技术在单菌体精度揭示了持留菌的代谢特征,为研究微生物持留现象的产生和持留菌复苏的机制提供了进一步的线索,有助于开发针对慢性感染复发的新治疗策略和方法。  面对恶劣的生存条件和巨大的生存压力,微生物开发了多种策略,“持留”(

怎样用拉曼光谱检测单细胞水平的固态氮

  氮是维持生命活动最重要的营养元素之一。氮气是氮元素的丰富来源,但由于性质惰性,不能为生物直接利用。氮的生物地球化学循环是将氮转化成生物可利用形式的关键过程。固氮微生物,包括固氮细菌和固氮古菌,可将惰性的氮气转化成生物可利用的氨态氮或硝态氮。据估计,生物可利用氮的半数由生物固氮过程提供。然而,由于

关于拉曼光谱的拉曼效应介绍

  光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应。  当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直

拉曼分析

当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅是改变了方向,发生散射,而光的频率仍与激发光源一致,这中散射称为瑞利散射。但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。其散射光的强度约占总散射光强度的10-6~10-10。拉曼散射的产生原

拉曼测试

 简要介绍:先进材料表征方法利用电子、光子、离子、原子、强电场、热能等与固体表面的相互作用,测量从表面散射或发射的电子、光子、离子、原子、分子的能谱、光谱、质谱、空间分布或衍射图像,得到表面成分、表面结构、表面电子态及表面物理化学过程等信息的各种技术,统称为先进材料表征方法。先进材料表征方法包括表面

拉曼光谱

1、单道检测的拉曼光谱分析技术。2、以CCD为代表的多通道探测器的拉曼光谱分析技术。3、采用傅立叶变换技术的FT-Raman光谱分析技术。4、共振拉曼光谱分析技术。5、表面增强拉曼效应分析技术。

拉曼散射

1921 年,印度物理学家拉曼(C. V. Raman)从英国搭船回国,在途中他思考着为什么海洋会是蓝色的问题,而开始了这方面的研究,促成他于 1928 年 2 月发现了新的散射效应,就是现在所知的拉曼效应,在物理和化学方面都很重要。 1888 年 11 月,拉曼(他的全名是 Chandrasek

拉曼光谱

一、拉曼光谱的基本原理用单色光照射透明样品时,光的绝大部分沿着入射光的方向透过,一部分被吸收,还有一部分被散射。用光谱仪测定散射光的光谱,发现有两种不同的散射现象,一种叫瑞利散射,另一种叫拉曼散射。1.瑞利散射散射是光子与物质分子相互碰撞的结果。如果光子与样品分子发生弹性碰撞,即光子与分子之间没有能

拉曼光谱

一、拉曼光谱的基本原理用单色光照射透明样品时,光的绝大部分沿着入射光的方向透过,一部分被吸收,还有一部分被散射。用光谱仪测定散射光的光谱,发现有两种不同的散射现象,一种叫瑞利散射,另一种叫拉曼散射。1.瑞利散射散射是光子与物质分子相互碰撞的结果。如果光子与样品分子发生弹性碰撞,即光子与分子之间没有能

基于拉曼组的单细胞快检技术可同时定量检测

  通过光合作用固定的二氧化碳与太阳能在生物体内有三种主要的存储形式:多糖、油脂和蛋白质,共同构成了生物碳存储与生物能源产业的物质基础。目前,对细胞中这三类高含能储碳分子的识别、表征和定量极为繁琐,通常难以在单个细胞精度测量,这限制了光合固碳细胞工厂的筛选与改造效率。中国科学院青岛生物能源与过程研究

青岛能源所单细胞拉曼流式分选技术研究获进展

  日前,中国科学院青岛生物能源与过程研究所单细胞研究中心在基于微流控的单细胞拉曼流式分选技术研究中取得新进展,相关成果于2月5日在线发表在Analytical Chemistry (Zhang PR, et al, Anal Chem, 2015)。  单细胞拉曼分选(RACS)是一种极具潜力的活

青岛能源所发明拉曼激活单细胞液滴分选技术

  单个细胞是地球上细胞生命体功能和进化的基本单元。单细胞精度的高通量功能分选是解析生命体系异质性机制、探索自然界微生物暗物质的重要工具。单细胞拉曼光谱(SCRS)能够在无标记、无损的前提下揭示细胞固有的化学组成,因此拉曼激活细胞分选技术(RACS)日益受到关注。但分选通量是当前限制其广泛应用的瓶颈

拉曼介导靶向单细胞基因组原创技术研发成功

   单细胞精度的海洋微生物组功能靶向性拉曼分选与测序技术(scRACS-Seq)  刘阳供图   海洋是地球上最大的活跃碳库,海洋微生物在全球碳循环中起着至关重要的作用,然而由于大部分海洋微生物尚难以培养、原位代谢功能难以测量等技术瓶颈,业界对于海洋微生物光合固碳的原位功能机制等重要

拉曼介导靶向单细胞基因组原创技术研发成功

  单细胞精度的海洋微生物组功能靶向性拉曼分选与测序技术(scRACS-Seq)  刘阳供图  海洋是地球上最大的活跃碳库,海洋微生物在全球碳循环中起着至关重要的作用,然而由于大部分海洋微生物尚难以培养、原位代谢功能难以测量等技术瓶颈,业界对于海洋微生物光合固碳的原位功能机制等重要问题,仍然存在争议

青岛能源所发布首台单细胞拉曼分选及测序耦合系统

  10月20日,在第二十届全国分子光谱学学术会议暨2018年光谱年会上,中国科学院青岛生物能源与过程研究所发布了自主研发的单细胞拉曼分选及测序耦合系统(RACS-SEQ)。该系统无需标记即可获知细胞种系发生、生理状态及所处的微环境变化等关键表型,并在单细胞水平精度对接表型组与基因组。  RACS-

拉曼光镊技术成功实现单细胞无损识别与精确提取

  单细胞研究是当今生物医学领域备受关注的热点方向之一。传统生物学对细胞进行识别,往往需要借助染色等标记方式,导致细胞的损伤甚至死亡,限制对同一特定细胞的进一步分析和应用。近日,北京大学信息科学技术学院电子学系、纳米器件物理与化学教育部重点实验室叶安培教授课题组设计了一款生物芯片,并结合自主开发的“

拉曼物理学原理和拉曼贡献

物理学原理拉曼效应的机制和荧光现象不同,并不吸收激发光,因此不能用实际的上能级来解释,恩拉曼光谱和黄昆用虚的上能级概念说明拉曼效应。假设散射物分子原来处于电子基态,振动能级如上图所示。当受到入射光照射时,激发光与此分子的作用引起极化可以看作虚的吸收,表述为电子跃迁到虚态(Virtual state)

拉曼课堂小知识(一)拉曼光谱的原理

1.拉曼光谱的原理是什么?光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应。当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来

拉曼问题汇总:拉曼光谱百问解答总结!

拉曼光谱(Raman Spectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。今天分享一些问答集锦,希望对你有帮助。一、测试了一些样品,得到的

单细胞拉曼光谱发力-土壤解磷微生物获进展

磷作为促进植物生长的三大元素之一,对植物的根、花、果实都有益处,它能使树木生长良好发育,同时还能提高植物抗寒、抗旱的能力。合理施用磷肥,可增加作物产量,改善作物品质,因此磷是农作物养殖中要重点添加的养分。但是随着磷肥的大量施用,土壤中积累了很多固定态磷,大大降低了磷素的生物有效性。这不仅造成了磷肥的

探讨应用前景-单细胞拉曼创新技术研讨会在广州举办

  11月15日,由南方医科大学检验医学部、中国科学院青岛生物能源与过程研究所共同发起的单细胞拉曼创新技术研讨会在广州举办。  会议研讨了单细胞拉曼技术在临床医学检验、微生态、肿瘤细胞等领域的应用前景。南方医科大学江医院检验医学部主任周宏伟表示,耐药性的广泛传播与滥用抗生素密不可分,快速检测病原菌药

拉曼集成系统

拉曼集成系统便携式手持式应用·药厂原辅料检测·材料·生命科学·食品安全·珠宝考古·生物医学·石油化工·毒品、违禁品快速检测·爆炸物快速检测·物证鉴定·缉毒、缉私·反恐防暴产品特点·快速精确·合法合规·操作简单·轻巧便携·优异的光谱性能·现场、实验室均可使用·快速精确未知物鉴定·现场拍照取证·实时数据

共聚焦拉曼

半导体激光器逐渐在电信、材料加工和医药领域找到一席之地,但其特性经常受到光钎耦合效率损耗和在高输出功率处激光亮度的限制。扩展激光器结构把窄条激光器的模品质与宽条激光器的高输出功率结合来克服这些问题,但是直到今天它们仍存在另外问题。扩展掩埋脊形的半导体激光器,已产生650mW输出功率。波导宽度从2~8

拉曼光谱技术

1. 拉曼点扫面积有多大?显微镜物镜出口的激光光斑的直径约1-2微米。拉曼成像的区域大小更多取决于自动平台的移动范围,尺度和自动平台相关,有75X50mm,100X80mm,300X300mm等选择。2. 表面增强拉曼能否表征金膜表面修饰的单分子层自组装膜的形态?如膜的缺陷可以,前提是你的单分子膜有

关于拉曼探头

  非浸入式拉曼探头   RPB,RPS拉曼探头是适于实验室用途的多功能采样附件。 这些探头具有532纳米、785纳米及其他激发波长,并配备用于激发和收集光纤的FC和SMA 905连接器。 RPB探头采用阳极化铝材料并带有一个不锈钢尖头,包含一个手动安全快门;RPS探头为不锈钢材料,含一个透射指示

拉曼成像技术

拉曼成像技术是新一代快速、高精度、面扫描激光拉曼技术,它将共聚焦显微镜技术与激光拉曼光谱技术完美结合,作为第三代Raman技术,具备高速、极高分辨率成像的特点。相对于原来的传统拉曼应用技术而言,新一代拉曼成像速度是常规Raman mapping的300-600倍,一般在几分钟之内即可获取样品高分率的