能源所揭示丝状产油微藻异养条件产油机制及其促进策略

2013年中国科学院青岛生物能源与过程研究所研究员刘天中带领的微藻生物技术研究组首次发现一类高产油的丝状真核微藻——黄丝藻。黄丝藻具有环境适应性强、耐虫害、易采收等较强工业应用性状,较之传统单细胞产油微藻更具有生产生物柴油的巨大工业应用潜质。同时,研究发现,黄丝藻能够利用葡萄糖进行异养生长,为光合自养占地与生长速度缓慢等问题提供了解决之道。 然而,不同于以往小球藻油脂积累情况,黄丝藻在光合自养条件下能够积累大量脂质,而在异养条件下,脂质含量急剧下降 (Algal Research, 2017)。因此,阐明丝状微藻黄丝藻光合自养和异养生长之间油脂积累机制,找出两种生长模式下油脂显著差异的原因,提出改善异养细胞脂质积累的办法至关重要。 研究人员通过比较小型黄丝藻在光合自养和异养条件下细胞的生长、各生化组分的含量、转录组学和代谢组学特征来研究其在不同培养条件下的代谢差异。基于转录组学和代谢组学的比较分析,研究人员生成了在光合......阅读全文

能源所揭示丝状产油微藻异养条件产油机制及其促进策略

  2013年中国科学院青岛生物能源与过程研究所研究员刘天中带领的微藻生物技术研究组首次发现一类高产油的丝状真核微藻——黄丝藻。黄丝藻具有环境适应性强、耐虫害、易采收等较强工业应用性状,较之传统单细胞产油微藻更具有生产生物柴油的巨大工业应用潜质。同时,研究发现,黄丝藻能够利用葡萄糖进行异养生长,为光

青岛能源所提出利用丝状微藻产油新思路

  利用能源微藻生产生物柴油,其核心在于大规模、高效、低成本培养微藻以获得大量的生物质。目前,研究产油藻主要集中在单细胞微藻为主,在室外规模培养时,由于敌害生物(主要是原生动物)对这些尺寸细小(通常直径在1-10微米)的单细胞微藻的摄食常导致培养失败,并且单细胞微藻的采收困难且成本较高。因此,获得高

青岛能源所:微藻产油机制研究取得新成果

  微拟球藻在缺氮条件下的产油过程。图中均为一个微拟球藻细胞,时间代表开始缺氮诱导后的天数,绿颜色是用Bodipy染料染色的中性脂(其中绝大部分为甘油三酯)       自然界中的一些微藻因产油量高、生长速度快、环境适应性强,并可在边际土地上用海水或废水培养,被视作一种重要的新型能源作物,但目前对其

蓝光特异性诱导的工业微藻高产油技术

  微藻是地球上主要的初级生产者之一,在全球碳循环中扮演重要角色。通过光合作用,微藻将光能和CO2转化为油脂(甘油三酯,TAG)等高能储碳物质,可在“碳固定”的同时助力“碳减排”。然而,微藻切实服务“双碳”行动的潜力,受限于其油脂生产率、规模培养工艺等影响能源微藻经济性的关键因素。近日,中国科学院青

科学家建立工业产油微藻基因敲低技术

  微藻通过光合作用将二氧化碳、光和水转化为油脂,因此,作为一种潜在的清洁能源生产和二氧化碳高值化方案,工业产油微藻受到了广泛关注。然而,藻类高效遗传工具的匮乏,一直是工业产油微藻分子育种和光驱固碳合成生物技术的重要瓶颈之一。近日,中国科学院青岛生物能源与过程研究所与中国科学院水生生物研究所合作,以

青岛能源所首次发现富含神经酸的产油微藻

  微藻被认为是最具潜力、能实现可持续供给的油脂生物质资源之一,但迄今为止还没有获得产业化突破,主要是因为规模化产油成本过高。通过获得一种优质、高含油、抗性强的速生微藻品种,并耦联高值产品生产,发展出低成本的规模化培养、采收及油脂提取加工工艺与技术,才能逐步实现产油微藻商业化。   近日,中国科学

青岛能源所微藻产油遗传机理和进化机制研究取得新进展

  近日,中国科学院青岛生物能源与过程研究所在微藻产油的遗传和进化机制研究方面取得新进展。研究人员以微拟球藻为模式生物,较为系统地阐明了高产油性状的遗传基础及进化机制,为高产油藻的筛选和育种提供了坚实基础和崭新思路。相关成果已于2014年1月9日在线发表于PLoS Genetics。   自然

青岛能源所建立工业产油微藻基因组编辑技术

  自然界的一些真核微藻能够通过光合作用固定二氧化碳,并将其转化和存储为油脂。因此,作为一种潜在可规模化的清洁能源生产和固碳减排方案,微藻能源近年来受到了广泛关注。然而,高效遗传工具的匮乏,极大限制了工业产油微藻的机制研究和分子育种。近日,中国科学院青岛生物能源与过程研究所单细胞研究中心以微拟球藻为

《代谢工程》:脂肪酸链长精准可调的工业产油微藻

  脂肪酸在细胞中以能量存储分子、膜脂、信号分子等形式普遍存在,并广泛应用于生物燃料、营养与健康、材料化工等产业。作为末端含有一个羧基的脂肪族碳氢链,碳链长度是决定脂肪酸功能、价值和用途的关键因素之一。近日,中国科学院青岛生物能源与过程研究所单细胞中心开发出脂肪酸“全链长范围”、“单元链长精度”精准

中科院青岛能源所发明工业微藻高产油新技术

 BLIO技术助力微藻服务碳达峰与碳中和    单细胞中心供图微藻是地球上最主要的初级生产者之一,在全球碳循环中扮演重要角色。通过光合作用,微藻把光能和CO2转化为油脂(甘油三酯;TAG)等高能储碳物质,因此可在“碳固定”的同时助力“碳减排”。但是微藻切实服务双碳行动的潜力,一直受限于其油脂生产率、

中科院青岛能源所发明工业微藻高产油新技术

 BLIO技术助力微藻服务碳达峰与碳中和    单细胞中心供图微藻是地球上最主要的初级生产者之一,在全球碳循环中扮演重要角色。通过光合作用,微藻把光能和CO2转化为油脂(甘油三酯;TAG)等高能储碳物质,因此可在“碳固定”的同时助力“碳减排”。但是微藻切实服务双碳行动的潜力,一直受限于其油脂生产率、

青岛能源所等开发出高CO2耐受工业产油微藻

  工业微藻能够将阳光和烟道气直接转化为生物柴油,因此是应对全球气候变暖的重要举措之一。然而烟道气中高浓度的CO2及其导致的酸性培养条件,往往抑制了微藻的生长,因此提高CO2耐受性是设计与构建超级光合固碳细胞工厂的关键瓶颈之一。近期,中国科学院青岛生物能源与过程研究所单细胞中心通过逆转进化时针的研究

通过代谢工程提升工业产油微藻固定二氧化碳效率

  工业产油微藻能通过光合作用将二氧化碳与光能大规模地转化为油脂,因此作为一种清洁能源生产和二氧化碳高值化的潜在方案,在国内外受到了广泛关注。针对如何提升工业产油微藻的固碳能力这一关键问题,中国科学院青岛生物能源与过程研究所示范了一种通过调控RuBisCO(核酮糖-1,5-二磷酸羧化酶/加氧酶)的激

863计划课题利用藻类养殖开展沼液生物处理技术

  依托863计划“特殊生物藻种资源利用关键技术及产品”课题,研究团队从鄱阳湖、萍乡杜仲生猪养殖场、美国明尼苏达淡水湖筛选和驯化嗜污小球藻、栅藻、螺旋藻、丝状高油藻类等藻类资源,建立了比较完备的藻种筛选、改良、保藏及综合评价技术体系,开发了富油微藻数据库、示范网站和手机APP终端服务平台,拓建了微藻

特殊生物藻种课题利用藻类养殖开展沼液生物处理技术

  依托863计划“特殊生物藻种资源利用关键技术及产品”课题,研究团队从鄱阳湖、萍乡杜仲生猪养殖场、美国明尼苏达淡水湖筛选和驯化嗜污小球藻、栅藻、螺旋藻、丝状高油藻类等藻类资源,建立了比较完备的藻种筛选、改良、保藏及综合评价技术体系,开发了富油微藻数据库、示范网站和手机APP终端服务平台,拓建了微藻

微藻生物柴油:标新立异中孕育创新

▲微藻培养池▲微藻 图片来源:百度图片  微藻生物柴油作为一项涉及生物能源、碳碱排和农业生产三位一体的战略性技术,吸引了全世界众多研究机构、大学和企业参与研发。不过,现有的微藻生物柴油技术还很不经济,投资大、成本高、占地多,这些是待解问题。  从微藻中提油,听起来匪夷所思,但目前很多科学家正在打它的

产油海洋微拟球藻中的碳汇新分子,此为何物?

  中国科学院上海有机化学研究所金属有机化学国家重点实验室王晓明课题组致力于研究多金属物种参与的反应体系,包括通过金属间电子传递、基团转移实现挑战性的转化过程和探究内在规律、仿酶的双多核金属催化剂的开发和金属团簇催化等。2021年,课题组采用双核铑/双膦的新组合实现了胺、重氮化合物与烯丙基化合物的三

非欧佩克产油国料仍将增产

  据路透社28日报道,石油输出国组织(欧佩克)在其即将于下周例会上讨论的长期战略报告草案中表示,尽管油价偏低,但北美页岩油热潮仍不减,这表明全球供应过剩局面可能还会再持续两年,非欧佩克产油国的原油供应量预计至少在2017年前都会增加。  报告指出,自2014年6月以来,油价大幅下跌,甚至触及比20

国产油漆涂层测厚仪哪款好

国产油漆涂层测厚仪哪款好国产油漆涂层测厚仪哪款好?国产油漆涂层测厚仪XHM-610A这款好,该仪器是一款采用磁性测厚法,可以方便无损地测量铁磁材料上非磁性涂层的厚度,如钢铁表面上的锌、铜、铬等镀层或油漆、搪瓷、玻璃钢、喷塑、沥青等涂层的厚度。XHM-610A采用单片机技术,测量精度高、数字显示、操作

中科院青岛生物能源与过程所-徐健来水生所学术交流

     徐健研究员作学术报告   5月31日,中国科学院青岛生物能源与过程研究所徐健研究员应邀来水生生物研究所进行学术交流, 作了题为“Establishment of a novel Nannochloropsis-based research model and platform te

水生所能源微藻油脂代谢机制研究取得系列进展

  能源是人类社会可持续发展所面临的重要问题之一。微藻通过光合作用积累生物量和油脂,可用于生产新型清洁能源,是第三代生物燃料的基础。中国科学院水生生物研究所研究员王强学科组从2011年起与中国石化石油化工科学研究院22室主任荣峻峰合作,开展了“微藻生物能源”及“能源微藻油脂代谢及能量信号调控机制”的

美国能恢复头号产油国地位吗?

  美国页岩气革命的喧嚣还未散尽,关注点又转向了致密油。   德克萨斯州南部的鹰滩(Eagle Ford)页岩油气田、北达科他州的巴肯(Bakken)油田是目前世界上最大的致密油储量地。   2008年以来,美国致密油日产量从60万桶飞涨至350万桶。致密油和页岩气为美国经济增长做出了巨大贡献:

研究称水藻油脂产量翻番不是梦想

  近日,《自然—生物技术》在线发表的一篇论文指出,一种基因改造的水藻品系的油脂产量可达其野生亲本的两倍,而且能达到与后者类似的生长速度。这些发现使人们向微藻源可持续生物燃料的最终商业化又迈进了一步。  自20世纪70年代末以来,人们一直在积极研究使用光养微藻所产生的油脂来制造生物柴油,以补充基于石

基因改造让微藻油脂产量翻番

  相应生物燃料商业化迈出一大步  英国《自然·生物技术》6月18日在线发表了一篇生物学重要成果:在使用包括CRISPR-Cas9技术在内的多种工具进行基因改造后的水藻品系,油脂产量可达其野生亲本的两倍,且能达到与后者类似的生长速度。这项新成果标志着微藻源可持续生物燃料的最终商业化向前迈进了一大步。

高产中链甘油三酯工业微藻

  中链甘油三酯(Mid-chain Triacylglycerides,MCT)是特殊的功能油脂,临床上主要用于减肥、促进能量代谢以及促进脑退化人群的恢复。近日,中国科学院青岛生物能源与过程研究所单细胞研究中心与大连化学物理研究所所高分辨分离分析及代谢组学研究组合作,揭示了微藻细胞中调控MCT合成

青岛能源所等微藻甾体类化合物合成机制研究取得进展

  甾体类化合物在真核生物中分布,但其在微藻中的代谢途径和生理作用知之甚少。近日,由中国科学院青岛生物能源与过程研究所单细胞研究中心和澳大利亚西澳大学澳大利亚研究委员会植物能源生理卓越中心(ARC Centre of Excellence, Plant Energy Biology)组成的联合研究团

产油酵母系统生物学研究获进展

  中科院大连化物所研究员赵宗保带领生物质高效转化研究团队在产油酵母系统生物学研究领域取得新进展。相关成果日前发表于《生物燃料技术》杂志。   产油酵母将生物质资源转化为微生物油脂,可用于制造先进液体生物燃料和油脂化工产品。但生物质等廉价原料因含有较丰富的氮源,不利于产油酵母积累油脂。   赵宗

产油酵母系统生物学研究获进展

  中科院大连化物所研究员赵宗保带领生物质高效转化研究团队在产油酵母系统生物学研究领域取得新进展。相关成果日前发表于《生物燃料技术》杂志。   产油酵母将生物质资源转化为微生物油脂,可用于制造先进液体生物燃料和油脂化工产品。但生物质等廉价原料因含有较丰富的氮源,不利于产油酵母积累油脂。   赵宗

中东产油国力求能源结构多元化

    迪拜10月23日专电(记者宋宇 李志晖)在此间举行的2012年世界能源论坛上,中东各国能源官员认为,应努力探索能源结构多元化,确保经济持续发展。     国际能源组织的数据显示,未来25年全球对石油和天然气基础设施建设的投资将达19万亿美元。石油、天然气和煤炭等化石燃料的主导地位短期内不会改

我国育成首个高油高产油莎豆品种

  日前,由中国农科院油料所选育的新型油料作物油莎豆“中油莎1号”通过中国作物学会油料作物专业委员组织的品种认定。这是我国育成的首个高油高产油莎豆品种。  油莎豆原产非洲,为莎草科一年生草本油料作物,享有“生命之果”的美誉。油料所油料逆境生物学团队历经10年,通过辐射诱变、提纯复壮及南繁加代穿梭育种