修复光合作用提升作物产量
在进化基本失败的地方,智慧设计成功了。生物学家通过弥补光合作用的一个重要缺陷,使烟草生物量增加了约40%。相关成果日前发表于《科学》杂志。一种高效的产量提升方法或将很快出现。图片来源:stevanovicigor/Getty 目前,该团队正从豇豆和大豆入手,试图将相同的变化引入食用作物。“资助机构非常渴望让全世界最贫困人群掌握这项技术。”团队成员、美国伊利诺伊大学的Amanda Cavanagh表示。 生命的关键成分是由碳原子链形成的分子。植物会组装这些来自碳原子的链条,而碳原子则来自空气中的二氧化碳分子。 不过,抓住二氧化碳并将其添加到碳链中的酶,通常会错误地抓住氧分子。这产生了毒性分子,导致植物不得不消耗能量将前者消除。这种重要缺陷被描述为进化的最大错误之一。 公平地说,当光合作用最早进化出来时,这不是一个大问题,因为周围的空气很少。但在漫长的进化年代里,随着氧气含量上升和二氧化碳浓度下降,这变成植物的一个大问题......阅读全文
修复光合作用提升作物产量
在进化基本失败的地方,智慧设计成功了。生物学家通过弥补光合作用的一个重要缺陷,使烟草生物量增加了约40%。相关成果日前发表于《科学》杂志。一种高效的产量提升方法或将很快出现。图片来源:stevanovicigor/Getty 目前,该团队正从豇豆和大豆入手,试图将相同的变化引入食用作物。“资助
修复光合作用提升作物产量
在进化基本失败的地方,智慧设计成功了。生物学家通过弥补光合作用的一个重要缺陷,使烟草生物量增加了约40%。相关成果日前发表于《科学》杂志。一种高效的产量提升方法或将很快出现。图片来源:stevanovicigor/Getty 目前,该团队正从豇豆和大豆入手,试图将相同的变化引入食用作物。“资助
新基因技术可提高作物光合作用产量
美国一项最新研究说,通过改造植物中的相关基因,可以使植物更有效进行光合作用,从而提高作物产量。植物通过光合作用把阳光和空气转化成有机物,从而给人们提供食物和燃料。但如果植物接受过多光照,可能对进行光合作用的相关细胞器造成损害,因此植物需要利用一种名为“非光化学淬灭”的机制来保护自身。 美国劳伦
光动力催化剂问世:模拟光合作用,可提高药物反应产量
美国麻省理工学院研究人员通过模拟光合作用,即植物用来生产糖分的光驱动过程,设计了一种可以吸收光并用光来驱动各种化学反应的新型光催化剂。该研究成果15日发表在《化学》杂志上。 这种新型催化剂被称为生物混合光催化剂,其含有一种采光蛋白,可吸收光并将能量转移到含金属的催化剂上。然后,这种催化剂利用能
神秘蛋白质可调控光合作用-或使农作物产量倍增
绿色植物的光合作用是生物界最基本的物质代谢和能量代谢,它利用阳光,将二氧化碳和水转化为碳水化合物,并释放出氧气。这一过程是否可调控?日本研究人员发现,一种蛋白质能调控植物的光合作用,加强它的功能或许可以可促进光合作用,增加农作物产量。 植物叶片表面有微小的气孔,光合作用所需的二氧化碳通过气
调控植物光合作用新开关被发现-有助提高农作物产量
美国密歇根州立大学的研究人员发现了一个调控植物光合作用的新“开关”,这项发表在新一期美国《国家科学院学报》上的成果,将有助于提高作物和生物燃料的产量。 植物通过光合作用来储存太阳能,这些能量以两种方式被储存,用于植物的新陈代谢。植物吸收的能量必须与新陈代谢所消耗的能量均衡,否则植物将开始产生毒
专家释疑海水稻亩产量低于理论产量:耕地状况决定产量
图片来源于网络 由“杂交水稻之父”袁隆平主持的全国大面积试种海水稻试验再次测产。10月10日,青岛城阳区盐碱地稻作改良示范基地试种的海水稻以实打亩产量261.39公斤收官,约为其理论亩产量669.24公斤的四成。 两种产量为何如此悬殊,有网友提出疑惑。 为此,青岛海水稻研发中心副主任张国栋向记
提高矿物浮选产量
最常见的选矿方法是泡沫浮选法。控制pH值对于最大程度提高矿物产量、减少化学物质使用量以及改变ζ 电势至关重要。我们名为《pH、ζ 电势与泡沫》的白皮书详细阐述了 pH值 对于泡沫浮选法效率的重要性以及智能电极管理技术如何进一步提高效率。泡沫浮选法或许是应用最广泛的选矿与富集方法。添加捕收剂和调整剂对
硫酸亚铁铵的实际产量低于理论产量的原因
硫酸亚铁铵的实际产量低于理论产量可能是生产过程中溶解掉了一些,也可能是在空气中氧化掉了一部分的硫酸亚铁铵。
硫酸亚铁铵的实际产量低于理论产量的原因
硫酸亚铁铵的实际产量低于理论产量可能是生产过程中溶解掉了一些,也可能是在空气中氧化掉了一部分的硫酸亚铁铵。
光合作用测定仪测定植物光合作用
在农业领域,随着科技的发展,农业仪器的种类和数量也在不断增加。而这些农业仪器按照应用领域的不同又分为了土壤仪器、种子仪器、植物生理仪器、农业气象 仪器、植保仪器等。而我们知道作物生长,绿色植物是通过光合作用自身合成有机物的,它最重要的一个生理活动就是光合作用,那么农业领域是否有专门测定植物 光合
光合作用测定仪测定植物光合作用
在农业领域,随着科技的发展,农业仪器的种类和数量也在不断增加。而这些农业仪器按照应用领域的不同又分为了土壤仪器、种子仪器、植物生理仪器、农业气象 仪器、植保仪器等。而我们知道作物生长,绿色植物是通过光合作用自身合成有机物的,它最重要的一个生理活动就是光合作用,那么农业领域是否有专门测定植
光合作用测定仪光合作用测定仪
光合作用测定仪(风途)Photosynthesis meter光合作用测定仪광합성 측정기 每一种植物的光合作用都是不同的,需要的条件也不尽相同,只要一点点的环境变化,光合作用的效果也会有所不同,要研究植物进行光合作用这一生命活动,必须要使用一个专业又准确的仪器才可以,而且要对光合作用测定
分析玉米容重与产量及其产量相关性状之间的关系
玉米是我国重要的粮食作物之一,在我国具有较大面积的种植。玉米在生长过程中,会受到众多因素的影响,最终其产量和品质也会大大的降低。玉米的质量的判定,从某种角度来说,通过玉米小麦容重器对玉米容重的测定,可以看出玉米的质量。玉米容重反映了玉米籽粒的饱满程度,容重愈大,质量也就愈高,表示虫蛀空壳、瘪瘦的玉米
光合作用检测仪如何测定植物光合作用?
研究植物的光合作用效果,需要对光合速率、光和效率以及光能利用率进行测定。光合速率指植物叶面积吸收二氧化碳的速率,光合效率指通过光合作用制造的有机物所含能量与吸收光能的比值,光能利用率指通过植物光合作用积累有机物所含能量占日光能量的比率。绿色植物通过光合作用可自身合成有机物,进行能量的转换,光合作用是
光合作用仪研究温室黄瓜夏季的蒸腾光合作用
温室是一个半封闭的系统。作物通过蒸腾作用与温室环境因子互相影响,在这个过程中,温室内作物形成 了独特的蒸腾规律。外界的太阳辐射使得温室升温,空气相对湿度减少,同时温室内作物的蒸腾作用,使作物从根部吸收的液态水在叶表面吸收热量后成为汽态水, 以水蒸气的形式散发到空气中,将太阳辐射产生的显热转变为潜热,
光合作用测定仪测定哪些植物光合作用指标
植物的生长离不开光合作用,光合作用为植物生长提供来了所需的能量物质,而在植物生理研究过程中通过光合作用测定仪检测各项因素计算光合作用的各校指标以此来研究植物的生理特性,为植物生产提供高质量的服务。光合作用是植物生长的重要生理过程,植物的光合作用指的是绿色植物在光的照射下,经过一些列的反应将水和二氧化
提高辣椒产量有良方
1.根据辣椒的需肥规律。辣椒花芽分化时间较早,幼苗只有2~3片真叶时,花芽和侧枝就开始分化,说明辣椒对肥料的需求较早,且耐肥性较强,所以,种植户应施足基肥,并及时补肥。 2.根据配方施肥搞好平衡施肥。辣椒虽然有较好的耐肥能力,但超过了极限也可能出现肥害。试验表明,茄果类的蔬菜,对钾需求量大,氮
转基因番茄产量翻倍
植物遗传学家已经找到了让番茄产量几乎翻倍的方法。尽管大部分人关注的主要是玉米或番茄的大小和口味,但培育者还关心这些植物如何生长,例如能极大影响果实数量的茎干的分支模式,或者果实收获的难易程度。 对于稻米、大麦和小麦,早期农民会让那些开花的茎能更多地分支,以便每棵植物能产出更多谷粒。但是,番茄的
快速了解中国秸秆产量
我国每年生产5亿多吨粮食,秸秆理论资源量为8亿多吨(可收集资源量为6.87亿吨)。 秸秆产业是一个新兴产业,它以秸秆为纽带,将秸秆收集与生态种养、秸秆能源化和秸秆材料化有机衔接,加固了农业循环经济的链条,拓展了农业产业的发展空间,增加了农民收入和农业发展的可持续性。鼓励和引导秸秆产业的发展,对
光合作用的意义
将太阳能变为化学能植物在同化无机碳化物的同时,把太阳能转变为化学能,储存在所形成的有机化合物中。每年光合作用所同化的太阳能约为人类所需能量的10倍。有机物中所存储的化学能,除了供植物本身和全部异养生物之用外,更重要的是可供人类营养和活动的能量来源。 因此可以说,光合作用提供今天的主要能源。绿色植物是
光合作用的意义
将太阳能变为化学能植物在同化无机碳化物的同时,把太阳能转变为化学能,储存在所形成的有机化合物中。每年光合作用所同化的太阳能约为人类所需能量的10倍。有机物中所存储的化学能,除了供植物本身和全部异养生物之用外,更重要的是可供人类营养和活动的能量来源。因此可以说,光合作用提供今天的主要能源。绿色植物是一
光合作用的原理
光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。 其主要包括光反应、暗反应两个阶段, 涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。
光合作用的意义
将太阳能变为化学能植物在同化无机碳化物的同时,把太阳能转变为化学能,储存在所形成的有机化合物中。每年光合作用所同化的太阳能约为人类所需能量的10倍。有机物中所存储的化学能,除了供植物本身和全部异养生物之用外,更重要的是可供人类营养和活动的能量来源。 因此可以说,光合作用提供今天的主要能源。绿色植物是
光合作用的定义
光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。 其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。
光合作用生物介绍
C3类植物通过C3途径固定CO2的植物称为C3植物,它们行光合作用所得的淀粉会贮存在叶肉细胞中,因为这是卡尔文循环的场所。C3类植物属于高光呼吸植物类型,光合速率较低,其种类多,分布广,多生长于暖湿条件,如大多数树木、植物类粮食、烟草等。C4类植物通过C4途径固定CO2的植物称为C4植物,它们主要是
光合作用的概念
光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。
光合作用反应过程
光合作用的过程是一个比较复杂的问题,从表面上看,光合作用的总反应式似乎是一个简单的氧化还原过程,但实质上包括一系列的光化学步骤和物质转变问题。根据现代的资料,整个光合作用大致可分为下列3大步骤:①原初反应,包括光能的吸收、传递和转换;②电子传递和光合磷酸化,形成活跃化学能(ATP和NADPH);③碳
叶绿素与光合作用
光合作用(Photosynthesis)是绿色植物利用叶绿素等光合色素和某些细菌(如带紫膜的嗜盐古菌)利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为储存着能量的有机物,并释放出氧气(细菌释放氢气)的生化过程。同时也有将光能转变为有机物中化学能的能量转化过程。植物之所以
植物光合作用检测仪:光合作用的重要性
植物通过光合作用把光能转化为自身需要的有机化合物,以促进自身的生长和发展。对农业来说,农作物也是植物,也会进行光合作用,而且农作物在生长初期,成熟期以及开花结果的时期,光合作用的结果都是不同的,如果我们能根据光合作用的结果,知道农作物在不同的生长时间需要什么样的条件能更好的促进光合作用的发展,这