近代物理所SSCLinac成功实现加速铀束
2018年12月,由中科院近代物理所承建的SSC-Linac项目获得重要进展。前端连续波四杆型RFQ加速器成功实现加速238U35+离子束,输出流强达到4.5eμA。图1:离子源引出的束流分布图 四杆型RFQ是由近代物理所和北京大学重离子物理研究所联合研制完成,注入能量为3.728 keV/u,输出能量为143 keV/u。项目组在对RFQ高频腔体进行满功率40 kW老炼的基础上,于2018年12月底,通过与离子源、低能束线的联合调试,成功实现对238U35+的加速,测得输出流强4.5eμA,束流传输效率好于85%。试验结果表明该RFQ加速器系统达到了满功率运行设计指标,其加速离子的种类也达到了设计要求。 SSC-Linac是国内首台连续波高电荷态强流重离子直线加速器,设计输出能量1.02 MeV/u,可实现从氢到铀全离子加速。目前,SSC-Linac已成功完成了H2+(200 eμA)、12C4+(37 eμA)、16......阅读全文
近代物理所SSCLinac成功实现加速铀束
2018年12月,由中科院近代物理所承建的SSC-Linac项目获得重要进展。前端连续波四杆型RFQ加速器成功实现加速238U35+离子束,输出流强达到4.5eμA。图1:离子源引出的束流分布图 四杆型RFQ是由近代物理所和北京大学重离子物理研究所联合研制完成,注入能量为3.728 keV/u
我国科学家完成加速器新组合模式的首次束流调试
2020年1月7日,中国科学院近代物理研究所完成常温直线加速器(SSC-Linac)、分离扇回旋加速器(SSC)与同步加速器(CSRm)新组合运行模式的首次束流调试,成功得到了320MeV/u的209Bi 55+束流。这是国际上首次采用直线+回旋+同步的三种不同类型加速器独特组合运行的大科学装置
加速离子束的装置
从离子源获得的离子束的能量一般从几百电子伏到几万电子伏。因为用高引出电压方式获得较高能量的离子束受到击穿的限制,所以必须使离子在电场和磁场中加速,这类装置叫做加速器(见粒子加速器) 使用各种加速器可以使离子获得很高的能量(如几百吉电子伏),也可以使离子减速,以获得能量较低的(如几十电子伏)但流强
我国首台高能同步辐射光源成功加速第一束电子束
3月14日,中国第一台高能同步辐射光源、“十三五”国家重大科技基础设施高能同步辐射光源(HEPS)直线加速器满能量出束,成功加速第一束电子束。这意味着高能同步辐射光源进入科研设备安装、调束并行阶段。 高能同步辐射光源直线加速器是一台常温直线加速器,长约49米,用于产生电子,并将电子加速到500
我国首台医用重离子加速器建成出束
我国首台自主研发的医用重离子加速器日前成功出束,实现了碳离子束的加速(每核子400兆电子伏)和共振引出。 据介绍,首台医用重离子加速器落户于甘肃武威重离子治疗示范中心,利用中科院近代物理研究所的先进技术,依托武威肿瘤医院,由荣华集团投资建设,是我国大科学装置回报社会的突破性尝试。 武威重离子
CERN首次实现质子束驱动的尾波电子加速
在科幻小说《三体》中,三体人用“智子”干扰人类粒子加速器,以便阻碍地球人的发展。估计在三体人眼中,粒子加速器算得上是人类科技发展最得力的工具了。 一直以来,人类对于升级改造加速器乐此不疲。5月26日凌晨,在欧洲核子研究中心(CERN),新一代加速器——AWAKE项目,在世界上首次通过质子束穿
高能同步辐射光源加速器调束进入快行道
记者从中国科学院高能物理研究所获悉,8月18日,高能同步辐射光源(HEPS)储存环流强达到12毫安,这是HEPS建设的又一重要里程碑,标志着HEPS加速器进入了调束快行道。HEPS是我国及亚洲首台第四代同步辐射光源,也是全球首批10皮米弧度量级自然发射度的光源之一,其核心是一台具有极低发射度的全新储
高能同步辐射光源加速器调束进入快行道
从中国科学院高能物理研究所获悉,8月18日,高能同步辐射光源(HEPS)储存环流强达到12毫安。这是HEPS建设的又一重要里程碑,标志着HEPS加速器调束进入了快行道。 HEPS是我国乃至亚洲首台第四代同步辐射光源,也是全球首批10皮米弧度量级自然发射度的光源之一。其核心是一台具有极低发射度的
加速电压会影响电子显微镜束流吗
一般来说,束斑小的分辨率高。但束斑小相应的束流也小,转化为成像信号的电子也少,而统计噪音是固定的。当信号值低于噪音的3倍时,将无法识别信号代表的信息。信噪比是限制成像分辨率的一个重要基本因素。 特殊情况也有大束斑分辨率高的,例如100倍,用最大束斑,就比最小束斑分辨率高。因为在相同的扫描区域,最小的
加速电压会影响电子显微镜束流吗
一般来说,束斑小的分辨率高。但束斑小相应的束流也小,转化为成像信号的电子也少,而统计噪音是固定的。当信号值低于噪音的3倍时,将无法识别信号代表的信息。信噪比是限制成像分辨率的一个重要基本因素。 特殊情况也有大束斑分辨率高的,例如100倍,用最大束斑,就比最小束斑分辨率高。因为在相同的扫描区域,最小的
加速电压会影响电子显微镜束流吗
一般来说,束斑小的分辨率高。但束斑小相应的束流也小,转化为成像信号的电子也少,而统计噪音是固定的。当信号值低于噪音的3倍时,将无法识别信号代表的信息。信噪比是限制成像分辨率的一个重要基本因素。 特殊情况也有大束斑分辨率高的,例如100倍,用最大束斑,就比最小束斑分辨率高。因为在相同的扫描区域,最小的
高能同步辐射光源增强器实现电子束升能加速
11月17日,国家重大科技基础设施高能同步辐射光源(HEPS)增强器成功实现电子束升能加速。现场测试专家认为,增强器各项关键指标全部优于设计要求,总体性能达到同类装置国际先进水平。增强器成功升能加速,表明增强器已为开展多模式运行和提供高质量电子束做好了准备。这是HEPS加速器建设的又一重要里程碑
我国首台自主研发的医用重离子加速器建成出束
12月23日凌晨,我国首台自主研发的医用重离子加速器成功出束,实现了碳离子束的加速(每核子400兆电子伏)及非线性共振慢引出,达到了设计指标。 在中国科学院、国家相关部门以及地方各级政府的大力支持下,中科院近代物理研究所会同其控股的兰州科近泰基新技术有限公司,将近代物理所近60年积累的技术成功
散裂中子源快循环同步加速器1.6GeV质子束流成功加速引出
7月7日下午,中国散裂中子源(CSNS)的快循环同步加速器(RCS)成功将质子束流加速到设计能量1.6GeV,并引出到废束站。这是CSNS工程建设中的又一个里程碑。 CSNS RCS是国内第一台快循环同步加速器,国外另外两台大型快循环同步加速器分别是英国散裂中子源(ISIS)的70MeV~80
散裂中子源快循环同步加速器1.6GeV质子束流成功加速引出
7月7日下午,中国散裂中子源(CSNS)的快循环同步加速器(RCS)成功将质子束流加速到设计能量1.6GeV,并引出到废束站。这是CSNS工程建设中的又一个里程碑。 CSNS RCS是国内第一台快循环同步加速器,国外另外两台大型快循环同步加速器分别是英国散裂中子源(ISIS)的70MeV~80
科学家4天发现45种新放射性同位素
日本理化学研究所6月8日宣布,一个国际联合研究小组利用RI射束工厂的放射性同位素射束加速器,在4天之内发现了从锰(25号元素)到钡(56号元素)的45种新放射性同位素。新发现的同位素数量高于世界上约40种年平均发现的同位素数量。对破解长期以来元素的合成以及中子过剩原子核之谜打开了
美激光等离子加速器输出高质量高能电子束
激光等离子加速器(LAPs)因其加速空腔的长度可用厘米而不是公里(千米)来计量而被称为“桌面加速器”。近年来,由于技术的迅速发展,科学家有望开发出新型实用的激光等离子加速器。与当今传统的加速器相比,激光等离子加速器不仅造价十分低廉,而且对土地和环境的影响要小得多。“体形”差异甚大
铌三锡超导电子加速器首次实现稳定载束
原文地址:http://news.sciencenet.cn/htmlnews/2024/4/521256.shtm近期,中国科学院近代物理研究所与东江实验室在铌三锡材料的射频超导应用方面取得重要进展,研制的铌三锡固体传导冷却超导电子加速器在国际上首次实现稳定载束。该加速器的研制先后得到国家重大科技
怀柔(50MeV)质子回旋加速器设施成功出束
近日,IEEE Internet of Things Journal刊载了中国科学院沈阳自动化研究所工业网络团队在5G无线数据传输方面的最新成果(Mixed-criticality Industrial Data Scheduling on 5G NR)。 随着5G技术的日趋成熟,5G在垂直行
科学家制造小型粒子加速器使电子束接近光速
科学家已经成功地研制出一种袖珍的粒子加速器,能够以超过99.99%的光速用激光投射超短电子束。为了达到这个目标,研究人员不得不放慢光的传播速度,以匹配电子的速度,使用一种特别设计的金属化结构,这种结构的内层是比人的头发丝更薄的石英层。这一巨大飞跃式进步能在时间尺度小于10飞秒(10E-15秒)的情况
北京放射性核束加速器通过科技成果鉴定
近日,北京放射性核束加速器自主研发及应用项目通过科技成果鉴定。鉴定专家组认为,北京放射性核束加速器是我国核科学技术领域内开展基础和应用研究的重要平台,是目前我国唯一基于在线同位素分离 (ISOL)的放射性核束设施,是继欧洲ISOLDE、美洲ISAC等装置之后国际上为数不多的高分辨ISOL装置。
兰州重离子加速器首次实现离子源脉冲束注入运行
1月17日至22日,中国科学院近代物理研究所加速器运行团队,利用超导离子源SECRAL首次为兰州重离子加速器(HIRFL)提供了约120电子微安的40Ar12+脉冲束(图1),并成功注入HIRFL储存环CSR(图2),实现了束流的加速和累积(图3),累计运行超过48小时。 Afterglow工
我国超导直线加速器实现质子束10毫安稳定运行
大年三十,就在家家户户都忙着拍全家福时,中国科学院近代物理研究所(简称近物所)超导直线加速器团队成员也排排站好,面向镜头比划出象征着胜利的大拇指。 他们身后的红色电子屏上写着:“2021年2月11日5:16,ADS超导直线加速器样机(CAFE)成功加速10.3mA连续波质子束,超过设计指标!
铌三锡超导电子加速器首次实现稳定载束
近期,中国科学院近代物理研究所与东江实验室在铌三锡材料的射频超导应用方面取得重要进展,研制的铌三锡固体传导冷却超导电子加速器在国际上首次实现稳定载束。该加速器的研制先后得到国家重大科技基础设施项目、国家自然科学基金委面上项目、中国科学院“青促会”、先进能源科学与技术广东省实验室科研平台等项目的支
铀表面氮化对铀上镀钛界面结合的影响
金属铀在核燃料领域有着非常重要的应用,然而由于铀拥有特殊的外层电子,因此性质非常活泼,极易遭受腐蚀,铀的使用过程中必须考虑腐蚀防护。通过物理气相沉积的方法在铀表面制备防腐蚀薄膜是一种有效地防腐蚀手段,但是实际工艺中,铀易氧化的特性使得膜基界面形成氧化层,影响长期应用中的膜基结合力。本文采用离子氮化技
近物所162.5MHz质子连续束RFQ加速器研制获进展
中国科学院近代物理研究所承担的ADS先导专项超导质子直线加速器RFQ研制获重要进展:162.5MHz/560keV RFQ样机完成了10mA连续束流测试;162.5MHz/2.1MeV RFQ完成了加工以及整腔场平整度和频率的调整测量。 162.5MHz/560keV质子RFQ样机由近
RFQ加速器通过现场技术测试-达到连续质子束10毫安
7月17日至19日,ADS先导专项强流连续质子束超导直线加速器注入器II离子源、低能传输线和162.5MHz@2.1MeV ADS RFQ (射频四极)加速器(见图2),通过了中国科学院重大科技任务局组织的专家组进行的现场技术测试。 该项目RFQ加速器是用于ADS先导专项质子超导直线加速器注
连式分束/合束器
连式分束/合束器 对于使用双光源或双光谱仪的应用来说,分束/合束器是一个新的选择。由于体积小巧,分束/合束器可以直接固定到Avantes任何型号的光谱仪或光源的前面板上,从而轻松地将已有的系统升级为双通道系统。 由于分束/合束器的灵活性(作为分束器时可将一路光分为两路,作为合束器
科研重器更好服务经济社会
说起重离子加速技术,给人的第一印象往往是尖端技术、大科研项目。如今,这一技术日臻成熟,已经成功应用到具体产业和产业链上。日前,记者走访兰州等地了解到,中国科学院近代物理研究所(以下简称“近代物理所”)重离子加速器技术在工农业生产、医疗卫生等各方面有着重要而广泛的应用。什么是重离子加速技术?如何走出一
强流质子超导直线加速器原型样机连续波质子束成功出束
11月24日,中国科学院战略性先导科技专项“未来先进核裂变能——ADS嬗变系统”(简称ADS专项)取得核心技术重大突破,中科院近代物理研究所研制的强流质子超导直线加速器低能段原型样机,成功引出了能量2.68MeV、最大流强3.6mA的连续波质子束,束流功率达到9.6kW。这是目前国际上连续束运行