中科院植物所发现乙烯调控种子休眠形成新机制

日前,中国科学院植物研究所研究员刘永秀带领的团队同德国马普植物育种所、弗莱堡大学的科研人员合作,揭示了乙烯调控种子休眠形成的新机制,对开展优化育种、减少作物种子穗发芽提供了新的理论基础。相关成果于3月6日发表在国际学术期刊《植物细胞》上。 以往研究表明,种子休眠受多种植物激素调节,除广泛报道的脱落酸和赤霉素外,乙烯也在种子休眠调控中发挥着重要作用,但对其分子机制知之较少。在本研究中,科研人员利用图位克隆技术证实,拟南芥的一个种子休眠突变体rdo3是由乙烯受体ETR1突变功能缺失引起的。在该突变体中,乙烯响应因子ERF12表达上调,其表达的蛋白ERF12可以结合种子休眠关键因子的启动子,并通过招募抑制因子抑制其表达,进而负调控种子休眠。 穗发芽是指农作物种子在收获前由于潮湿天气诱发的在母体植株上发芽的现象,严重影响农作物的产量及加工食品品质,是一种世界性的灾害。防止穗发芽发生的有效途径是使种子成熟后保持适度的休眠,使其既......阅读全文

中科院植物所发现乙烯调控种子休眠形成新机制

  乙烯(ethylene)是最简单的烯烃,少量存在于植物体内,是植物的一种代谢产物,能使植物生长减慢,促进叶落和果实成熟。无色易燃气体。  日前,中国科学院植物研究所研究员刘永秀带领的团队同德国马普植物育种所、弗莱堡大学的科研人员合作,揭示了乙烯调控种子休眠形成的新机制,对开展优化育种、减少作物种

中科院植物所发现乙烯调控种子休眠形成新机制

   日前,中国科学院植物研究所研究员刘永秀带领的团队同德国马普植物育种所、弗莱堡大学的科研人员合作,揭示了乙烯调控种子休眠形成的新机制,对开展优化育种、减少作物种子穗发芽提供了新的理论基础。相关成果于3月6日发表在国际学术期刊《植物细胞》上。  以往研究表明,种子休眠受多种植物激素调节,除广泛报道

拟南芥种子休眠机制研究获进展

原文地址:http://news.sciencenet.cn/htmlnews/2023/4/498538.shtm 种子休眠是指完整有活力的种子在适宜环境条件下仍不能萌发的生物学特性,受环境和遗传因素影响,是典型的多基因调控的复杂数量性状。目前已发现的种子休眠调控因子的作用机制中,基因转录调控

拟南芥种子休眠机制最新研究进展

近日,中科院植物研究所研究员刘永秀团队发现拟南芥转录后调控的重要分子机器pre-mRNA 3'末端加工复合体参与种子休眠调控。相关研究成果发表于《植物杂志》。种子休眠是指完整有活力的种子在适宜环境条件下仍不能萌发的生物学特性,受环境和遗传因素影响,是典型的多基因调控的复杂数量性状。目前已发现

赤霉素处理打破萝卜种子休眠实验

赤霉素处理打破萝卜种子休眠的研究刘玉石,丁九敏(连云港职业技术学院)对大多数种子公司而言,刚从农户或育种基地收回来的萝卜种子,有些品种是有休眠期的。而处于休眠期的种子会影响种子发芽率。据相关资料记载,赤霉素对于打破 种子休眠有一定作用。本实验采用不同浓度的赤霉素溶液对萝卜种子进行不同时间的处理,来确

植物所揭示种子休眠与萌发的表观遗传调控机制

  种子休眠与萌发是植物由生殖生长过渡到营养生长的重要发育转变进程,涉及大量基因的激活或者沉默。组蛋白修饰介导的表观遗传基因转录调控可能在其中发挥关键作用,但其分子机制尚不完全清楚。  中国科学院植物研究所刘永秀研究组利用遗传和生理生化等手段,揭示了拟南芥SNL1和SNL2调控种子休眠和萌发的分子机

激素介导种子休眠调控机制研究取得进展

  种子休眠是农业生产上一个重大农艺性状,适度的休眠水平对作物种子的正常收获、贮存及随后的萌发都起着关键的作用,也极大地影响着农作物的产量和品质,具有重要的经济学意义。大量研究表明,ABA与GA两种激素相互拮抗地调控种子休眠,它们在种子从休眠向萌发转换的生理过程中起到了重要的调控作用。因此,ABA与

Nature子刊:什么基因决定了种子休眠

  生物活性赤霉素(GAs或二萜)是陆地植物中的必需激素,其控制植物生长和发育的许多方面。在开花植物中,13-OH GAs(具有低生物活性-例如GA1)和13-H GAs(具有高生物活性-例如GA4)经常在同一植物中共存。然而,天然拟南芥13-羟化酶GA的特性及其生理功能仍然未知。  2019年9月

乙烯知识

硫酸乙醇三比一,温计入液一百七。迅速升温防碳化,碱灰除杂最合适。 乙烯分子含双键,氧化加成皆不难。高锰酸钾紫红去,卤素氢气氢卤酸。 乙烯聚合好塑料,燃焰明亮出黑烟。乙烯水化制乙醇,氧化得醛又得酸。 解释: 1、乙烯分子含双键,氧化加成皆不难:这两句的意思是说因为乙烯中含有双键,所以易

杉木种子休眠分子机制研究获新进展

北京林业大学在杉木种子休眠分子机制研究领域取得新进展。有关成果日前发表在国际著名植物学期刊《Plant Physiology》上。种子休眠是植物应对不利环境的一种适应对策,可阻止作物的成熟种子在收获前萌发,从而有效避免减产。另一方面,打破种子休眠可促进种子萌发,在作物种植和林业育苗中实现整齐出苗。了

乙烯市场对聚乙烯(LLDPE)市场影响

  乙烯的产能、产量、贸易情况及亚洲地区价格等都会对线性低密度聚乙烯(LLDPE)的市场价格产生直接影响。2012年全球乙烯产能再度进入扩张阶段,全球新增产将超过600万吨,但是在新增产能投产之前,乙烯价格对LLDPE价格形成支撑。经过了2011年和2012年前三个季度的新产能消化之后,从2012年

人工气候培养箱对种子休眠过程的研究

种子休眠是生物体在长期进化过程中形成的对外界环境的一种适应性,它有利于生物体渡过不良环境,使种族得以繁衍,但给人类利用带来了困难。目前关于种子休 眠的机制仍没有比较明确的结论。通过选取一定的老鸦瓣种子在人工气候培养箱中进行研究其萌发率以及眠休特征。 破眠种子适宜萌发条件将G,CK处理种子于胚率为70

研究发现拟南芥调控种子休眠和萌发的新成员

  研究种子休眠和萌发的调控机理对于植物生存和农业生产具有重要的理论意义。种子休眠属于数量性状,受环境因素和遗传因子的共同调控。拟南芥DOG1(DELAY OF GERMINATION 1)基因是控制种子休眠数量性状位点(QTL)的主效基因,DOG1功能缺失突变体的种子休眠彻底丧失,并且DOG1相关

新疆生地所发现异型种子休眠类型的新组合

  种子异型性是指同一植株产生两种或两种以上种子类型的现象,是植物在不可预测环境下所采取的“两头下注”对策。已有研究结果表明,异型种子的休眠类型组合多数可能是“不休眠+非深度生理休眠”。其他的休眠类型组合还没有明确报道。   最近,中科院新疆生态与地理研究所科研人员发现了异型种子休眠类型的新组合:

Nature子刊等多篇研究论文解析种子表观遗传调控

  生物通报道:种子休眠与萌发是植物由生殖生长过渡到营养生长的重要发育转变进程,涉及大量基因的激活或者沉默。一些研究发现这个过程中,组蛋白修饰介导的表观遗传基因转录调控可能发挥了重要作用,但是具体分子机制尚不完全清楚。  来自中国科学院植物研究所的刘永秀研究员一直从事表观遗传和植物激素调控种子休眠和

植物所发现拟南芥调控种子休眠和萌发的新成员

  研究种子休眠和萌发的调控机理对于植物生存和农业生产具有重要的理论意义。种子休眠属于数量性状,受环境因素和遗传因子的共同调控。拟南芥DOG1(DELAY OF GERMINATION 1)基因是控制种子休眠数量性状位点(QTL)的主效基因,DOG1功能缺失突变体的种子休眠彻底丧失,并且DOG1相关

植物所发现拟南芥调控种子休眠和萌发的新成员

  研究种子休眠和萌发的调控机理对于植物生存和农业生产具有重要的理论意义。种子休眠属于数量性状,受环境因素和遗传因子的共同调控。拟南芥DOG1(DELAY OF GERMINATION 1)基因是控制种子休眠数量性状位点(QTL)的主效基因,DOG1功能缺失突变体的种子休眠彻底丧失,并且DOG1相关

乙烯的应用历史

早在20世纪初就发现用煤气灯照明时有一种气体能促进绿色柠檬变黄而成熟,这种气体就是乙烯。但直至60年代初期用气相层析仪从未成熟的果实中检测出极微量的乙烯后,乙烯才被列为植物激素。

乙烯的应用介绍

乙烯是气体,在田间应用不方便。一种能释放乙烯的液体化合物2-氯乙基膦酸(商品名乙烯利)已广泛应用于果实催熟、棉花采收前脱叶和促进棉铃开裂吐絮、刺激橡胶乳汁分泌、水稻矮化、增加瓜类雌花及促进菠萝开花等。

乙烯的应用介绍

乙烯是气体,在田间应用不方便。一种能释放乙烯的液体化合物2-氯乙基膦酸(商品名乙烯利)已广泛应用于果实催熟、棉花采收前脱叶和促进棉铃开裂吐絮、刺激橡胶乳汁分泌、水稻矮化、增加瓜类雌花及促进菠萝开花等。

乙烯的研究历史

早在20世纪初就发现用煤气灯照明时有一种气体能促进绿色柠檬变黄而成熟,这种气体就是乙烯。但直至60年代初期用气相层析仪从未成熟的果实中检测出极微量的乙烯后,乙烯才被列为植物激素。

乙烯的制取实验

硫酸乙醇三比一, 温计入液一百七。 迅速升温防碳化, 碱灰除杂最合适。 解释: 1、硫酸乙醇三比一:意思是说在实验室里是用浓硫酸和乙醇在烧瓶中混合加热的方法制取乙烯的(联想:①浓硫酸的量很大,是乙醇的三倍,这是因为浓硫酸在此既做催化剂又做脱水剂;②在烧瓶中放入几片碎瓷片,是为了防止混合液受热

乙烯的生理作用

生理作用是:三重反应、促进果实成熟、促进叶片衰老、诱导不定根和根毛发生、打破植物种子和芽的休眠、抑制许多植物开花(但能诱导、促进菠萝及其同属植物开花)、在雌雄异花同株植物中可以在花发育早期改变花的性别分化方向等。

乙烯的制备来源

乙烯是合成纤维、合成橡胶、合成塑料(聚乙烯及聚氯乙烯)、合成乙醇(酒精)的基本化工原料,也用于制造氯乙烯、苯乙烯、环氧乙烷、醋酸、乙醛和炸药等,也可用作水果和蔬菜的催熟剂,是一种已证实的植物激素。

乙烯的作用特点

促进果实成熟,促进器官脱落和衰老。它的产生具有“自促作用”,即乙烯的积累可以刺激更多的乙烯产生。乙烯可以促进RNA和蛋白质的合成,并使细胞膜的通透性增加, 加速呼吸作用。因而果实中乙烯含量增加时,可促进其中有机物质的转化,加速成熟。乙烯也有促进器官脱落和衰老的作用。用乙烯处理黄化幼苗茎可使茎加粗和叶

乙烯的主要作用

促进果实成熟,促进器官脱落和衰老。它的产生具有“自促作用”,即乙烯的积累可以刺激更多的乙烯产生。乙烯可以促进RNA和蛋白质的合成,并使细胞膜的通透性增加, 加速呼吸作用。因而果实中乙烯含量增加时,可促进其中有机物质的转化,加速成熟。乙烯也有促进器官脱落和衰老的作用。用乙烯处理黄化幼苗茎可使茎加粗和叶

乙烯的制备方法

自然形成乙烯是一种气体激素。成熟的组织释放乙烯较少,而在分生组织,萌发的种子、凋谢的花朵和成熟过程中的果实乙烯的产量较大。它存在于成熟的果实;茎的节;衰老的叶子中。乙烯的产生具有“自促作用”(即乙烯的积累可以刺激更多的乙烯产生)。植物在干旱、大气污染、机械刺激、化学胁迫、病害等逆境下,体内乙烯成几倍

乙烯的发现历史

中国古代就发现将果实放在燃烧香烛的房子里可以促进采摘果实的成熟。19世纪德国人发现在泄露的煤气管道旁的树叶容易脱落。第一个发现植物材料能产生一种气体,并对邻近植物能产生影响的是卡曾斯,他发现橘子产生的气体能催熟与其混装在一起的香蕉。直到1934年甘恩(Gane)才首先证明植物组织确实能产生乙烯。随着

乙烯的功能作用

促进果实成熟,促进器官脱落和衰老。它的产生具有“自促作用”,即乙烯的积累可以刺激更多的乙烯产生。乙烯可以促进RNA和蛋白质的合成,并使细胞膜的通透性增加, 加速呼吸作用。因而果实中乙烯含量增加时,可促进其中有机物质的转化,加速成熟。乙烯也有促进器官脱落和衰老的作用。用乙烯处理黄化幼苗茎可使茎加粗和叶

乙烯的存在部位

乙烯广泛存在于植物的各种组织、器官中,是由蛋氨酸在供氧充足的条件下转化而成的。合成部位:植物体各个部位。