印度开发出可选择性疏油或疏水的凝胶材料

据印度媒体日前报道,印度研究人员最近开发出一种新型凝胶材料,可根据不同处理方法有选择性地获得疏水或疏油特性。 据《印度教徒报》报道,印度理工学院高哈蒂分校的研究团队先将水溶性的天然生物聚合物——壳聚糖材料转化为纳米颗粒,然后通过化学处理将其转化为稳定的凝胶材料。 研究人员用酸(pH值为1)处理这种材料约15分钟,能够使其具备极度疏油的特性。如果用乙醇处理这种材料10分钟,然后进行空气干燥,能够使其具有疏水特性。 这就使得原本可进行生物降解的壳聚糖材料,最终根据不同处理方法,变成具备疏油或疏水特性的凝胶材料,从而可从油水混合物中去除油或者水。 相关研究成果已发表在新一期英国《材料化学杂志》周刊上。......阅读全文

印度开发出可选择性疏油或疏水的凝胶材料

  据印度媒体日前报道,印度研究人员最近开发出一种新型凝胶材料,可根据不同处理方法有选择性地获得疏水或疏油特性。  据《印度教徒报》报道,印度理工学院高哈蒂分校的研究团队先将水溶性的天然生物聚合物——壳聚糖材料转化为纳米颗粒,然后通过化学处理将其转化为稳定的凝胶材料。  研究人员用酸(pH值为1)处

离子液体萃取分离疏水疏油天然活性同系物

天然活性物质是中等分子量的化合物,其结构复杂且含多官能团。部分天然活性物质分子结构兼具疏水基团和极性基团且分子间作用强,因而水溶性和油溶性均较差;且在植物中同时与结构、性质相近的同系物共存,此类疏水疏油天然活性同系物分离难度较大。现有分离方法如吸附层析存在溶剂消耗量大、处理量低等不足。本文拟利用离子

兰州化物所功能超疏油材料研究取得新进展

Schematic Depiction of Fabricating Superoleophobic Micro- And Nanopatterned TiO2 NT Arrays  近日,中科院兰州化学物理研究所固体润滑国家重点实验室表面与界面课题组在疏油材料研究方面取得新进展。  界面超疏水性质

一秒检测你的手机屏幕是否有疏油层

前不久,“疏水疏油层”突然成了一个特别火的词汇。在网上引发热议的同时,相信也会有一部分人对此一脸懵逼:疏水疏油层是什么鬼?这玩儿意是做什么用的?有没有差别大吗?其实疏水疏油层在生活中很常见,只不过当你接触到时并没有注意到罢了。解读疏水疏油层 它就是屏幕上的一层膜疏水疏油层,说白了就是能够疏离水和油脂

“一种超双疏表面制备技术”获国家发明ZL授权

  与有关超疏水报道相比,超疏油表面方面的报道较少。超疏油表面有着更广泛和实际的用途。12月21日获悉,中国科学院兰州化学物理研究所固体润滑国家重点实验室研究人员研发出一种超双疏表面制备技术,并获国家发明ZL授权(一种超疏水超双疏表面制备技术,ZL号:200810183392.4)。   该技术将

能高效清理回收水面浮油的疏水亲油海绵问世

  频繁的石油泄漏事故对海洋生态系统和海洋环境带来巨大的破坏,但随着一种“疏水亲油海绵”的问世,这一难题有望得到彻底解决。记者日前从中国科学技术大学获悉,该校化学与材料科学学院俞书宏教授研究组与工程科学学院丁航教授研究组合作,在清理回收水面浮油装置的设计及应用方面取得重要进展,研究成果近日发表在《德

兰州化物所仿生多相介质表面极端润湿行为调控研究进展

  润湿性是生物体和材料表面的重要特性,引发学界关注。基于仿生表界面的特殊润湿属性,科研人员开发出较多具有超疏液性质的功能材料表面。但目前发展的超疏液材料表面仅能够在单一的环境介质中表现其独特的疏液性质,如鲨鱼皮肤表面仅能够在水下表现出超疏油性质;油滴在空气中则会在干燥表面快速铺展,失去防污功能。此

宁波材料所制备出高效油水分离用纤维素海绵

  近年来,超疏油-超亲水材料由于其特殊的润湿性在油水分离方面备受青睐。由于“油”的表面张力远小于水,故超疏油-超亲水表面较难制备而且超疏油表面大多超疏水,这就限制了其在油水分离方面的应用。此外,表面活性剂稳定的乳化油油滴粒径小(99.94%)、水通量(91 Lm−2 h−1重力作用下)、抗油穿透力

研究实现水下透明且坚固的超疏油薄膜的快速制备

固体表面的特殊润湿性是自然界中普遍存在的现象,因其在油水分离、防污和减阻等领域的潜在应用而备受关注。例如,受鱼鳞、珍珠层和海藻等水下生物体的水下超疏油特性表面启发,科研人员设计和制备了许多新型的水下超疏油界面材料。然而,对于水下超疏油材料而言,开发兼具高透明度和机械稳定性能仍是目前面临的挑战,这限制

德国马普高分子研究所成功开发新型超级双疏膜

  德国马普高分子研究所成功开发一种新型超级双疏膜,利用这种膜能够根据需要将二氧化碳等气体富集到溶液和气体,或者将其从液体或气体中溶出。这些特性主要归因于膜表面的超双疏(疏水疏油)涂层。这一涂层不仅能改进气体交换,而且能防止膜孔堵塞。   在用于气体交换时,膜的纳米结构面接触液体,气体分子在膜的另

油水分离用超疏水石墨烯泡沫材料研究获进展

  新型二维碳材料-石墨烯是构成其它石墨材料的基本单元,特别是由其为基本单元构成的三维结构材料,具有丰富的孔道、较高的比表面积以及疏水亲油的特点,使其具有了作为油水分离用吸附剂的基本特征。同时,稳定的、互通的孔道结构以及高的表面化学活性,有利于材料油水分离过程中循环使用性的提高,因此,三维石墨烯逐渐

油水分离用超疏水石墨烯泡沫材料研究获进展

  新型二维碳材料-石墨烯是构成其它石墨材料的基本单元,特别是由其为基本单元构成的三维结构材料,具有丰富的孔道、较高的比表面积以及疏水亲油的特点,使其具有了作为油水分离用吸附剂的基本特征。同时,稳定的、互通的孔道结构以及高的表面化学活性,有利于材料油水分离过程中循环使用性的提高,因此,三维石墨烯逐渐

油水分离用超疏水石墨烯泡沫材料研究获进展

  近日,太原重型机械集团自主研发的首台海上5兆瓦风电机组在福建三峡集团福清兴化湾样机试验风场成功并网发电。  据悉,该设备风轮直径达153米,扫风面积比两个半标准足球场还大,轮毂高度105米,采用独立电动变桨等先进技术,一台设备每小时可输出5000度电,能满足1万户家庭使用。

高效乳化油水分离膜材料取得阶段性进展

  工业生产及日常生活中产生的废污水对自然环境和生态平衡危害极大,特别是含油废水的排放,严重污染水体资源,使我国日益严重的经济社会发展与水资源短缺及浪费之间的矛盾变得更加突出,因此加大对含油废水的分离利用显得非常重要和急迫。其中乳化油废水排放量大、成分复杂、COD值高,严重危害水体环境和人类健康。乳

可重编程材料实现选择性自组装

原文地址:http://news.sciencenet.cn/htmlnews/2022/10/488139.shtm 科技日报北京10月23日电 (记者张梦然)创建自动化结构或机器的过程至今仍是自上而下的,需要人工、工厂或机器人进行组装和制造。然而,大自然组装的方式普遍是自下而上的。美国麻省理

基于飞秒激光微加工技术获得水下透明超疏油界面

  西安交通大学陈烽教授团队基于飞秒激光微加工技术获得了水下透明超疏油界面。该项研究成果以封面文章的形式发表在材料类期刊J. Mater. Chem. A [3, 9379-9384 (2015)]上,同时该研究工作被国际科技新闻网站Chemistry World以标题“Fish and Flowe

兰州化物所棉纤织物表面可控润湿性研究获新进展

  中国科学院兰州化学物理研究所先进润滑与防护材料研发中心研究人员在多功能化超疏水表面研究方面取得新进展。  该研究小组利用聚二烯丙基二甲基铵盐酸盐(PDDA)和聚苯乙烯磺酸钠(PSS)在棉纤织物表面层层自组装,得到(PDDA/PSS)3PDDA聚电解质多层薄膜,通过改变PDDA吸附

兰州化物所自修复超双疏表面制备研究取得进展

  近日,中国科学院兰州化学物理研究所固体润滑国家重点实验室表/界面研究组提出了制备自修复超双疏(超疏水和超疏油)表面简单有效的方法。  近年来,尽管已通过许多方法成功制备了人造超双疏表面,但它们的应用受到耐用性低的限制。大部分人造超双疏表面非常脆弱,易受机械磨损、苛刻条件破坏的影响

长春应化所在特殊润湿性表面制备方面取得新进展

  润湿性是固体材料表面的基本性质,表面润湿性的调控对于材料在生物医用、仿生、涂料、润滑、液体输送、自清洁等许多方面的应用具有重要意义,因此关于超疏水、超疏油、超双疏、超亲水等各种极端润湿特性表面的研究近年来受到广泛关注,成为材料科学领域的一个热点。  中国科学院长春应用化学研究所苏朝晖课题组报道了

长春应化所在特殊润湿性表面的制备方面取得新进展

  润湿性是固体材料表面的基本性质,表面润湿性的调控对于材料在生物医用、仿生、涂料、润滑、液体输送、自清洁等许多方面的应用具有重要意义,因此关于超疏水、超疏油、超双疏、超亲水等各种极端润湿特性表面的研究近年来得到了广泛的关注,成为材料科学领域的一个热点。   中国科学院长春应用化学研究所苏朝晖课题组

大连理工大学毕业生陆遥团队发明稳定自清洁涂料

  美丽的荷花出淤泥而不染,从荷叶上滚落的水珠可以清除其上吸附的灰尘和细菌,是源于荷叶拥有的“超疏水表面”。由大连理工大学毕业生陆遥团队研发的新涂料,同样可以使材料形成自清洁的“荷叶”表面,甚至在被划破或磨损后都能如此。该研究成果发表于新近出版的美国《科学》杂志。  近20年来,仿荷叶的人造超疏水表

兰州化物所研发加固仿生自清洁硅基仿生材料

  出淤泥而不染的荷叶,捕虫高手猪笼草,科学家们研究仿生,利用自然界赋予的神奇功效为人类服务。然而,仿生“荷叶”和“猪笼草”却有一颗“玻璃心”,一旦受到外界触碰,“自清洁”功能也随即消失。  “我们要做可以应用的硅基仿生自清洁材料。”中科院兰州化学物理研究所甘肃省黏土矿物应用研究重点实验室张俊平研究

疏水扩容器

   疏水扩容器是将压力疏水管路中的疏水进行扩容降压,分离出蒸汽和疏水,将蒸汽引入换热器或除氧器中,充分利用其热能,而疏水则被引入疏水箱中定期送入给水系统。主要是降低压力,如果高压蒸汽直接进入凝汽器,容易引起凝汽器超压,通过它可以降低压力,避免超压,同时里面有的还有减温装置,可以降低温度。   而机

疏水作用层析

实验概要通过实验了解疏水作用层析的原理与方法。实验原理疏水作用层析(Hydrophobic  Interaction  Chromatography,HIC)是根据分子表面疏水性差别来分离蛋白质和多肽等生物大分子的一种较为常用的方法。蛋白质和多肽等生物大分子的表面常常暴露着一些疏水性基团,我们把这些

兰州化物所在界面材料研究方面取得系列进展

  中国科学院兰州化学物理研究所固体润滑国家重点实验室仿生摩擦学课题组近年来从仿生角度出发,构筑了多种具有特殊浸润性的微纳复合结构界面材料。近期,研究人员将棉花膨胀分散溶解在氯化锌溶液中,进而在其纤维上掺杂了多种硬脂酸盐,通过简单的抽滤、压片干燥,得到了多种彩色超疏水纸。此外,在常见的沙子表面,通过

三聚氰胺、甲醛和纸浆的妙用——油水分离材料制备

  近年来溢油事件频发,油污泄露会对环境和生态造成毁灭性的破坏,泄漏污染是全球范围内水污染治理所面临的挑战。化学清理、焚烧、围栏收集等传统油污染处理方法耗时耗力,过程中往往会带来二次污染。各类基于仿生原理制备的超疏水材料,已广泛应用于油水分离、防污防护等领域。多数材料在制备过程不可避免地使有机化学试

疏齿巴豆的介绍

  疏齿巴豆,学名Croton limitincola Croiz. ,大戟科,巴豆属,灌木,嫩枝、叶下面、叶柄和花序均被贴伏腊质星状毛,枝条无毛。叶薄革质,总状花序,顶生或腋生。雄花萼片卵形,雄蕊花丝具绵毛;雌花萼片披针形,蒴果近球形,被蜡质贴伏星状毛。花期9-11月。生于密林中,少见。

海洋所超双疏自清洁防腐防冰涂层研究获新进展

  近日,中国科学院海洋研究所在有机-无机复合杂化超双疏自清洁防腐防冰涂层研究方面取得新进展,相关成果发表在《材料科学与技术杂志》。有机-无机复合杂化超双疏涂层及其长效防腐与延迟结冰功能。海洋研究所供图  受荷叶效应启示的超疏水材料,因优异的界面不润湿特性使其在自清洁、海洋防腐、低温防覆冰、液体输运

兰州化物所张俊平、邱洪灯研究员来新疆理化所作学术报告

  3月20日至21日,中科院兰州化学物理研究所张俊平研究员和邱洪灯研究员访问中科院新疆理化技术研究所并作学术报告。   访问期间,张俊平研究员作了题为“基于有机硅烷聚合物的超疏水/超疏油涂层研究”的学术报告,系统介绍了基于有机硅烷聚合物的仿生超疏水/超疏油材料的设计、制备及其在油水分离领域的应用

天津海事船舶可年节省百吨油

  日前,天津海事局6艘公务船舶获得《船舶能效管理证书》,自9月1日开始实施船舶能效管理,首开国内航行船舶获得能效管理认证并运行的先河。此举将提高天津海事局船舶能源利用效率,降低船舶二氧化碳排放,也将为国内航行船舶实施船舶能效管理提供借鉴和“样本”。  船舶能效管理,是指对船舶能源消耗、能源利用效率