芳香族化合物的紫外吸收光谱及溶剂效应实验

实验方法原理作为有机化合物结构解析四大光谱之一,紫外吸收光谱具有方法简单、仪器普及率高、操作简便,紫外吸收光谱吸收强度大检出灵敏度高,可进行定性、定量分析的特点。尽管紫外光谱谱带数目少、无精细结构、特征性差,只能反映分子中发色团和助色团及其附近的结构特征,无法反映整个分子特性,单靠紫外光谱数据去推断未知物的结构很困难,但是紫外光谱对于判断有机物中发色团和助色团种类、位置、数目以及区别饱和与不饱和化合物,测定分子中共轭程度进而确定未知物的结构骨架等方面有独到之处。因此紫外吸收光谱是配合红外、质谱、核磁进行有机物定性鉴定和结构分析的重要手段。利用有机光谱定性的依据是化合物的吸收光谱特征,主要步骤是绘制纯样品的吸收光谱曲线,由光谱特征依据一般规律作出判断;用对比法比较未知物和已知纯化合物的吸收光谱,或将未知物吸收光谱与标准谱图对比,当浓度和溶剂相同时,若两者谱图相同(曲线形状、吸收峰数目、λmax及 εmax等),说明两者是同一化合物......阅读全文

芳香族化合物的紫外吸收光谱及溶剂效应实验

实验方法原理 作为有机化合物结构解析四大光谱之一,紫外吸收光谱具有方法简单、仪器普及率高、操作简便,紫外吸收光谱吸收强度大检出灵敏度高,可进行定性、定量分析的特点。尽管紫外光谱谱带数目少、无精细结构、特征性差,只能反映分子中发色团和助色团及其附近的结构特征,无法反映整个分子特性,单靠紫外光谱数据去推

芳香族化合物的紫外吸收光谱及溶剂效应实验

实验方法原理作为有机化合物结构解析四大光谱之一,紫外吸收光谱具有方法简单、仪器普及率高、操作简便,紫外吸收光谱吸收强度大检出灵敏度高,可进行定性、定量分析的特点。尽管紫外光谱谱带数目少、无精细结构、特征性差,只能反映分子中发色团和助色团及其附近的结构特征,无法反映整个分子特性,单靠紫外光谱数据去推断

芳香族化合物的概念

芳香族化合物(aromatic compounds )是一类具有芳环结构的化合物。它们结构稳定,不易分解,可能会对环境造成严重的污染。历史上曾将一类从植物胶中取得的具有芳香气味的物质称为芳香族化合物。芳香族化合物一般是指分子中至少含有一个离域键的环状化合物,但现代芳香族化合物存在不含有苯环的例子。芳

芳香族化合物的取代反应

  是多数芳香化合物的重要反应之一,通过取代反应能从简单的芳香化合物合成较复杂的化合物。芳核上的取代反应从机制上讲包括亲电、亲核以及自由基取代三种类型,其中最常见的是亲电取代,例如:卤化、硝化、磺化、烷基化、酰基化等。芳香族化合物在有机合成工业上有重要的用途。

什么是芳香族化合物?

  芳香族化合物(aromatic compounds )是一类具有芳环结构的化合物。它们结构稳定,不易分解,可能会对环境造成严重的污染。历史上曾将一类从植物胶中取得的具有芳香气味的物质称为芳香族化合物。芳香族化合物一般是指分子中至少含有一个离域键的环状化合物,但现代芳香族化合物存在不含有苯环的例子

简述芳香族化合物的氧化反应

  凡能使分子中增加氧或失去氢或使元素、离子失去电子的反应统称为氧化反应。 利用氧化反应可以将芳香族化合物转化成醛、酮、羧酸、醌、环氧化物和过氧化物等 ,这些产物均是有机合成的重要中间体和原料 ,其中许多已广泛用于医药、农药、染料、香料、各种助剂、工程塑料和功能高分子的生产中。 稠环芳香族化合物由于

简述芳香族化合物的分类介绍

  一切具有芳香性苯环或杂环的碳氢化合物的总称。可分为两类:①苯烃或单苯芳烃,具有一个苯环的化合物及其衍生物。如苯、苯酚、卤代苯、甲苯等;②多环芳烃(polycyclic aromatic hydrocarbon,PAH),具有苯环或杂环共有环边的多环碳氢化合物。如萘、 蒽、 䓛、 苝、 苯并芘等。

关于芳香族化合物加氧酶的简介

  苯环化合物因其具有苯环结构而较难分解,若要在常温常压下将其分解,就必须依赖酶的参与。参与苯环化合物代谢的氧化酶可分为两类:一类为苯环羟基化加氧酶;另一类为苯环切割化加氧酶¨3'Hj。苯环羟基化加氧酶是通过氧分子及NADH或NADPH提供电子在苯环上加上两个羟基,如甲苯经过甲苯双加氧酶催化

关于芳香族化合物蒽的氧化介绍

  蒽醌的发现是染料化学工业发展史上的一个重要里程碑。蒽醌染料是数量最多、应用最广的染料,包括还原染料、活性染料、直接染料、酸性染料和分散染料等。蒽醌主要由蒽氧化制得。有关气固相催化氧化蒽制蒽醌的ZL文献很多,都是以V2O5为主要活性组分,温度一般在 400℃左右。据报道,MnO2可促进蒽醌中间体氧

关于芳香族化合物芴的氧化介绍

  由芴的氧化产物芴酮可以制作抗癌剂及交感神经抑制剂,也可作为除草剂使用。 Marlin将芴、四氯化碳以及四丁基铵水合物混合,在 30 ℃下搅拌 15 min,得到二氯芴,收率达 97. 26% 。 用硫酸处理所得二氯芴,可定量地得到芴酮。 在V2O5 Fe2O3存在下使芴氧化,掺杂 Cs2 SO4

关于芳香族化合物菲的氧化介绍

  氧化菲所得的 9,10-菲醌常用作预防谷物黑穗病、棉花苗期病的农药,也可作为制造染料中间体苯绕酮和纸浆防腐剂的原料。 深度氧化菲的产物— 联苯二甲酸是聚酯树脂、醇酸树脂及塑料增塑剂的原料。 在 CH2Cl2介质中 ,用氟铬酸喹啉可以很容易地将菲氧化成为 9,10-二菲醌,在氧化过程中,有氧的转移

关于芳香族化合物苊的氧化介绍

  氧化苊所得 1,8 -萘二甲酸酐是合成聚酯树脂、醇酸树脂和 BG灰色染料等的主要原料。苊经脱氢后生成苊烯 ,在 NBS存在和光照条件下该反应可以在室温下进行。苊烯经聚合生成的聚苊烯树脂可以代替酚醛树脂。Takeshita等用玫瑰红RB对苊烯敏化,生成顺式或反式 1,2 -二醇及其单醚衍生物。江致

紫外可见吸收光谱基本原理

1. 紫外可见吸收光谱产生的原理紫外可见吸收光谱是由于分子(或离子)吸收紫外或者可见光(通常200-800 nm)后发生价电子的跃迁所引起的。由于电子间能级跃迁的同时总是伴随着振动和转动能级间的跃迁,因此紫外可见光谱呈现宽谱带。紫外可见吸收光谱的横坐标为波长(nm),纵坐标为吸光度。紫外可见吸收光谱

紫外可见吸收光谱原理

1. 紫外可见吸收光谱产生的原理紫外可见吸收光谱是由于分子(或离子)吸收紫外或者可见光(通常200-800 nm)后发生价电子的跃迁所引起的。由于电子间能级跃迁的同时总是伴随着振动和转动能级间的跃迁,因此紫外可见光谱呈现宽谱带。紫外可见吸收光谱的横坐标为波长(nm),纵坐标为吸光度。紫外可见吸收光谱

芳香族化合物的降解苯的降解介绍

  苯的降解在 30 年前的研究已经非常成功 。苯降解时有二个分支途径,途径如图1中a。苯环最初被苯双加氧酶攻击而形成邻苯二酚,邻苯二酚进一步通过间位或邻位双加氧酶的作用而产生粘康酸半醛或粘康酸。

芳香族化合物的芳香性的介绍

  (1)具有平面或接近平面的环状结构;  (2)键长趋于平均化;  (3)具有较高的C/H比值;  (4)芳香化合物的芳环一般都难以氧化、加成,而易于发生亲电取代;  (5)具有一些特殊的光谱特征,如芳环环外氢的化学位移处于核磁共振光谱图的低场,而环内氢处于高场。大多数芳香化合物都含有一个或多个芳

紫外可见光谱产生的原因

分析化学中(紫外-可见分光光度法),B带从benzenoid(苯的)得名。是芳香族(包括杂芳香族)化合物的特征吸收带。苯蒸汽在230~270nm处出现精细结构的吸收光谱,又称苯的多重吸收带。因在蒸汽状态中,分子间彼此作用小,反映出孤立分子振动、转动能级跃迁,在苯溶液中,因分子间作用加大,转动消失仅出

关于芳香族化合物多环芳烃的介绍

  多环芳烃(Polycyclic Aromatic Hydrocarbons,PAH)是有机物不彻底燃烧产生的一类含有两个或两个以上融合芳香环的化合物 。微生物降解蔡的途径如图1中d。与其它芳香化合物的降解相同,第一步中双加氧菌进攻环形成 1,2 —经基蔡, 随后在第 1 和第 9 个碳原子间断裂

关于芳香族化合物的基本信息介绍

  现代芳香族是指碳氢化合物分子中至少含有一个带离域键的苯环,具有与开链化合物或脂环烃不同的独特性质(称芳香性,aromaticity)的一类有化合物。如苯、萘、蒽、菲及其衍生物。苯是最简单、最典型的代表。它们容易发生亲电取代反应、对热比较稳定,主要来自石油和煤焦油。  有些分子中虽然不含苯环但也具

紫外光谱仪的原理及应用

紫外可见吸收光谱产生的原理及应用如下:紫外可见吸收光谱是由于分子(或离子)吸收紫外或者可见光(通常200-800 nm)后发生价电子的跃迁所引起的。由于电子间能级跃迁的同时总是伴随着振动和转动能级间的跃迁,因此紫外可见光谱呈现宽谱带。紫外可见吸收光谱的横坐标为波长(nm),纵坐标为吸光度。紫外可见吸

气相色谱仪溶剂效应的适应范围及特性

 气相色谱仪溶剂效应的适应范围   1、  气相色谱仪有“溶剂效应”分析时,减小了溶剂拖尾,且接近溶剂拖尾峰,分辨率提高,即峰形变窄;   2、  对于远离溶剂峰,保留时间较大的组分,可以不考虑“溶剂效应”,用较高 的初始柱温,缩短分析时间;   3、  样品几乎全部进入色谱柱,特别适合稀释样品中痕

紫外可见光谱工作原理

  I 影响紫外可见吸收光谱的因素共轭效应:体系形成大π键,使各能级间的能量差减小,从而电子跃迁的能量也减小,因此共轭效应使吸收发生红移。  溶剂效应:1.由于溶剂的存在使溶质溶剂发生相互作用,使精细结构消失。2.  对π→π*跃迁来讲,溶剂极性增大时,吸收带发生红移;对于n→π*跃迁来讲,吸收光谱

紫外可见吸收光谱法的特点

1、紫外可见吸收光谱所对应的电磁波长较短,能量大,它反映了分子中价电子能级跃迁情况。主要应用于共轭体系(共轭烯烃和不饱和羰基化合物)及芳香族化合物的分析。2、由于电子能级改变的同时,往往伴随有振动能级的跃迁,所以电子光谱图比较简单,但峰形较宽。一般来说,利用紫外吸收光谱进行定性分析信号较少。3、紫外

紫外可见吸收光谱法的特点

1、紫外可见吸收光谱所对应的电磁波长较短,能量大,它反映了分子中价电子能级跃迁情况。主要应用于共轭体系(共轭烯烃和不饱和羰基化合物)及芳香族化合物的分析。2、由于电子能级改变的同时,往往伴随有振动能级的跃迁,所以电子光谱图比较简单,但峰形较宽。一般来说,利用紫外吸收光谱进行定性分析信号较少。3、紫外

色氨酸紫外吸收光谱定性扫描及定量分析实验

实验方法原理 紫外-可见光谱是用紫外-可见光的物质电子光谱,它研究产生于价电子在电子能级间的跃迁,研究物质在紫外-可见光区的分子吸收光谱。当不同波长的单色光通过被分析的物质时能测得不同波长下的吸光度或透光率,以ABS为纵坐标对横坐标波长λ作图,可获得物质的吸收光谱曲线。一般紫外光区为190 ~

色氨酸紫外吸收光谱定性扫描及定量分析实验

实验方法原理紫外-可见光谱是用紫外-可见光的物质电子光谱,它研究产生于价电子在电子能级间的跃迁,研究物质在紫外-可见光区的分子吸收光谱。当不同波长的单色光通过被分析的物质时能测得不同波长下的吸光度或透光率,以ABS为纵坐标对横坐标波长λ作图,可获得物质的吸收光谱曲线。一般紫外光区为190 ~ 400

紫外光谱原理

紫外可见吸收光谱产生的原理紫外可见吸收光谱是由于分子(或离子)吸收紫外或者可见光(通常200-800 nm)后发生价电子的跃迁所引起的。由于电子间能级跃迁的同时总是伴随着振动和转动能级间的跃迁,因此紫外可见光谱呈现宽谱带。紫外可见吸收光谱的横坐标为波长(nm),纵坐标为吸光度。紫外可见吸收光谱有两个

关于芳香族化合物的降解取代苯的降解简介

  取代基团的存在使苯环的降解出现两种可能:先降解苯环或先降解侧链 。含 2 ~ 7 个碳原子的单烃基取代苯的一般途径如图1中b)。当 C >7 时,先通过 β,ω氧化降解取代烃基链,最后再降解苯环。长的烃基侧链氧化后足够给微生物提供生长的能量,这样微生物就不会降解苯环 。

紫外可见吸收光谱的紫外光谱

各种因素对吸收谱带的影响表现为谱带位移、谱带强度的变化、谱带精细结构的出现或消失等。谱带位移包括蓝移(或紫移,hypsochromic shift or blue shift))和红移(bathochromic shift or red shift)。蓝移(或紫移)指吸收峰向短波长移动,红移指吸收峰

紫外光谱鉴别法的原理

紫外光谱鉴别法的原理如下:紫外光谱法所用仪器为紫外吸收分光光度计或紫外可见吸收分光光度计。光源发出的紫外光经光栅或棱镜分光后,分别通过样品溶液及参比溶液,再投射到光电倍增管上,经光电转换并放大后,由绘制的紫外吸收光谱可对物质进行定性分析。由于紫外线能量较高,故紫外吸收光谱法灵敏度较高;同时,本法对不