实验室分析仪器核磁共振碳谱的解析步骤
13C NMR解析步骤:1、确定分子式,计算不饱和度;2、排除溶剂峰及杂质峰;3、判断分子结构的对称性;4、判断C原子结构以及级数; 5、确定C核和H核的对应关系;6、提出结构单元并给出结构式; 7、排除不合理的结构;8、与标准波谱图谱进行比对。......阅读全文
实验室分析仪器核磁共振碳谱的解析步骤
13C NMR解析步骤:1、确定分子式,计算不饱和度;2、排除溶剂峰及杂质峰;3、判断分子结构的对称性;4、判断C原子结构以及级数; 5、确定C核和H核的对应关系;6、提出结构单元并给出结构式; 7、排除不合理的结构;8、与标准波谱图谱进行比对。
实验室分析仪器核磁共振碳谱的特点
1、灵敏度低由于γc= γH /4,且13C的天然丰度只有1.1%,因此13C核的测定灵敏度很低,大约是H核的1/6000,测定困难。2、 分辨能力高氢谱的化学位移δ值很少超过10ppm,而碳谱的δ值可以超过200ppm,最高可达600ppm。这样,复杂和分子量高达400的有机物分子结构的精细变化都
实验室分析仪器核磁共振碳谱的测定方法
1、 脉冲傅里叶变换法脉冲傅立叶变换法(Pulse Fourier Transform,简称PFT法)是利用短的射频脉冲方式的射频波照射样品,并同时激发所有的13C核。由于激发产生了各种13C核所引起的不同频率成分的吸收,并被接收器所检测。2、 核磁共振碳谱中的几种去偶技术13C核的天然丰度很低,分
核磁共振谱图解析
这个是个掉书袋的工作啊,难度不大,但是内容很多。至少需要掌握官能团对化学位移的影响和解耦合现象。通过化学位移解析官能团,通过耦合产生的能级裂分推断结构中各原子之间的连接关系。这个可以一门学分至少2的课。一时半会说不清啊。chemoffice可以模拟核磁谱,如果你只是为了论文作图,不妨试试看。想了解的
核磁共振氢谱解析
化学环境这里指化合物中氢原子核外的电子分布情况、与该氢核邻近的其他原子和成键电子的分布情况及其对该氢核的影响。化学环境不同的氢核(也就是结构环境不同的质子),其核磁共振谱图中的化学位移不同。(1)由信号峰的组数可以推知有机物分子中含有几种类型的氢(2)由各信号峰的强度(峰面积或积分曲线高度)比可以推
核磁共振碳谱实验
实验方法原理2.去偶技术:为了简化核磁共振的谱图,把核与核之间直接、间接相互作用去掉所采取的技术。13C NMR 谱多采用宽带去偶(BB 去偶),也叫质子噪声全去偶。13C NMRBB 去偶可以是谱图简化,使交迭的偶合的多重峰,间并为单峰。每个峰代表一种类型的碳。同时,去偶可增强信噪比,多重峰的合并
实验室分析仪器核磁共振碳谱自旋晶格弛豫时间(T1)
磁共振成像时,对置于外磁场BO中的自旋系统施加射频脉冲,则自旋系统被激励,其净磁化矢量指向偏转,不再与外磁场BO方向平行(如与BO垂直)。射频脉冲终止后,被激励的质子与周围环境(晶格)之间发生能量交换,把能量传递给周围的晶格,同时其净磁化矢量指向逐渐恢复与外磁场方向平行。该过程在自旋与晶格之间有能量
质谱的解析大致步骤
质谱的解析大致步骤如下:确认分子离子峰,并由其求得相对分子质量和分子式;计算不饱和度。找出主要的离子峰(一般指相对强度较大的离子峰),并记录这些离子峰的质荷比(m/z值)和相对强度。对质谱中分子离子峰或其他碎片离子峰丢失的中型碎片的分析也有助于图谱的解析。用MS-MS找出母离子和子离子,或用亚稳扫描
如何快速解析氢谱和碳谱
如何解析氢谱首先我们需要确定做核磁所使用的氘代溶剂,如果体系没有加TMS,我们就以氘代溶剂残留峰进行定标。对于有特征基团的分子,如甲基,甲氧基,叔丁基,亚甲基等等,我们优先以该峰为基准进行定氢的个数,然后再对其它峰进行操作。在这里我们切记不可用活泼氢作为标准来定氢的个数,因为活泼氢受浓度,温度,和溶
实验室分析仪器核磁共振氢谱的概念
核磁共振氢谱 (也称氢谱) 是一种将分子中氢-1的核磁共振效应体现于核磁共振波谱法中的应用。可用来确定分子结构。 当样品中含有氢,特别是同位素氢-1的时候,核磁共振氢谱可被用来确定分子的结构。氢-1原子也被称之为氕。
实验室分析仪器核磁共振谱仪的组成
通常是用电磁铁和永久磁铁产生均匀而稳定的磁场B。在两磁极之间安装一个探头,探头中央插入试样管。试样管在压缩空气的推动下,匀速而平稳地回旋。射频振荡器线圈安装在探头中,产生一定频率的射频辐射以激发核。它所产生的射频场必须与磁场方向垂直。射频接收线圈也安装在探头中,以来探测核磁共振时的吸收信号。另有一组
实验室分析仪器核磁共振谱仪的分类
一、按用途分类可分为核磁成像仪和核磁共振谱仪1)核磁成像仪 用于医院诊断疾病核磁共振成像(MRI),已成为医学诊断的重要手段。目前临床上得到的解剖图像,仅是人体中水和脂肪的质子的分布像。虽然它们在疾病诊断上很有用途,但不能提供正常组织和病理组织在分子结构上的区别。如果非破坏性地得到活体内化合物及其
实验室分析仪器核磁共振谱仪的分类
一、按用途分类可分为核磁成像仪和核磁共振谱仪1)核磁成像仪 用于医院诊断疾病核磁共振成像(MRI),已成为医学诊断的重要手段。目前临床上得到的解剖图像,仅是人体中水和脂肪的质子的分布像。虽然它们在疾病诊断上很有用途,但不能提供正常组织和病理组织在分子结构上的区别。如果非破坏性地得到活体内化合物及其
实验室分析仪器核磁共振氢谱的原理
核磁共振氢谱(也称氢谱) 是一种将分子中氢-1的核磁共振效应体现于核磁共振波谱法中的应用。可用来确定分子结构。当样品中含有氢,特别是同位素氢-1的时候,核磁共振氢谱可被用来确定分子的结构。氢-1原子也被称之为氕。简单的氢谱来自于含有样本的溶液。为了避免溶剂中的质子的干扰,制备样本时通常使用氘代溶剂(
核磁共振碳谱的特点和优点
核磁共振氢谱的主要参数有化学位移、峰的裂分和耦合常数,、峰面积,这些参数都在核磁共振氢谱中反映出来,但核磁共振碳谱的外观和氢谱有很大的差别。 核磁共振碳谱测定的是13C核,其同位素丰度只有大约1%,因此在碳谱中看不到碳碳之间的耦合裂分。再者,由于在测定碳谱时进行对氢的去耦,碳谱中没有相连的氢原子
核磁共振碳谱的特点和优点
核磁共振氢谱的主要参数有化学位移、峰的裂分和耦合常数,、峰面积,这些参数都在核磁共振氢谱中反映出来,但核磁共振碳谱的外观和氢谱有很大的差别。 核磁共振碳谱测定的是13C核,其同位素丰度只有大约1%,因此在碳谱中看不到碳碳之间的耦合裂分。再者,由于在测定碳谱时进行对氢的去耦,碳谱中没有相连的氢原子而
实验室分析方法质谱的解析大致步骤
1、确认分子离子峰,并由其求得相对分子质量和分子式;计算不饱和度。2、找出主要的离子峰(一般指相对强度较大的离子峰),并记录这些离子峰的质荷比(m/z值)和相对强度。3、对质谱中分子离子峰或其他碎片离子峰丢失的中型碎片的分析也有助于图谱的解析。4、用MS-MS找出母离子和子离子,或用亚稳扫描技术找出
影响碳的核磁共振谱和质子核磁共振谱化学位移因素
化学位移是由屏蔽作用所引起的共振时磁场强度的移动现象.所以位移的大小与氢核(或碳核)所处的化学环境有关.影响氢核的位移因素有:1、电负性.与质子连接的原子电负性越大,质子信号就在越低的磁场出现2、磁各向异性效应.分子中之子与某一官能团的关系会影响质子的化学位移,可以是反磁屏蔽,可以是顺磁屏蔽,情况比
现在核磁共振碳谱-氢谱-样品需要多少
氢谱的话,分子量比较小的,十多毫克就可以。如果分子量大,那么相同质量下的摩尔数更小,所以要多用一些样品,一般30-50毫克。如果样品不够的话,可以让做核磁的人帮你多扫几次。氢谱一般扫8次足够,如果你信噪比不行,可以扫个32次或者64次。碳谱完全取决于你想扫多少次,一般100毫克起吧,样品量不够需要过
核磁共振碳谱图和核磁共振氢谱图有何差别
根据氢谱和碳谱,联合得出,你的样品是混合物。你的碳谱,把49ppm的峰当作溶剂峰,另外能够测得37个碳,有3个可能是羰基C=O,芳香碳可能有8个,取代碳(碳上直接连O,N等)可能有3个,饱和碳可能有16个。但氢谱,第一,对应于峰的面积不是严格成比例,第二,与饱和碳、不饱和碳的构成分子结构,不能合拍。
实验室分析仪器-分析氢谱的步骤
1)区分出杂质峰、溶剂峰、旋转边带杂质含量较低,其峰面积较样品峰小很多,样品和杂质峰面积之间也无简单的整数比关系。据此可将杂质峰区别出来。氘代试剂不可能100%氘代,其微量氢会有相应的峰,如CDCl3中的微量CHCl3在约7.27ppm处出峰。边带峰的区别请阅6.2.1。2)计算不饱和度。不饱和度即
实验室分析仪器-核磁共振氢谱实验原理
1、核磁共振的概念具有磁性的原子核,处在某个外加静磁场中,受到特定频率的电磁波的作用,在它的磁能级之间发生的共振跃迁现象,叫核磁共振现象。2、核磁共振的共振条件①:具有磁性的原子核。(γ:某种核的磁旋比)②:外加静磁场(H0)中)。③:一定频率(υ)的射频脉冲。④:公式: 3、 化学位移的概念及产生
实验室分析仪器核磁共振氢谱仪的仪器介绍
核磁共振氢谱 (也称氢谱) 是一种将分子中氢-1的核磁共振效应体现于核磁共振波谱法中的应用。可用来确定分子结构。 当样品中含有氢,特别是同位素氢-1的时候,核磁共振氢谱可被用来确定分子的结构。氢-1原子也被称之为氕。
实验室分析仪器核磁共振谱仪数据优化操作
一、H-90°脉冲的测试在测试时,使原子核的磁化矢量翻转90°的脉冲宽度,这时得到的信号最强。测试前先设定照射功率,才能确定90°的脉冲宽度,改变照射功率,90°的脉冲宽度也会改变。我们测定一系列脉冲宽度的图谱,其中得到峰最强的脉冲宽度即为90°脉冲,但是最强峰不明显,所以测180脉冲宽度,这时峰强
实验室分析仪器-核磁共振一维氢谱简介
核磁共振一维氢谱是最常用的测试方法,因为氢谱的测试灵敏度是所有核磁共振谱中最高的,因而最容易测定,仅需要将几毫克样品溶在氘代试剂中,甚至有时不需要氘代试剂,可以直接取一定量的反应液就可以测定,几分钟就可以得到结果,非常方便快捷,所以是经常应用的分析方法,对有机化合物的结构鉴定往往起着举足轻重的作用。
红外谱图解析的步骤有哪些?
1、根据分子式,计算不饱和度:f = 1 + n4 + 1/2 ( n3 – n1) 通过计算不饱和度估计分子结构式中是否有双键、三键或芳香环等,并可验证光谱解析是否合理 2、根据未知物的红外光谱图找出主要的强吸收峰。按照由简单到复杂的顺序,习惯上将红外区分为五个区域来分析: (1)40
实验室分析仪器核磁共振谱溶剂的用量多少为合适
在定深量筒上都绘有相应线圈的位置及长度,一般只要保证样品的长度比线圈上下各多出3mm 即可,过少会影响自动匀场效果,过多浪费溶剂而且由于稀释了样品,减少了处在线圈中的有效样品量。这种情况下要注意将样品液柱的中心与定深量筒上的线圈中心对齐。
核磁共振谱仪样品制备步骤以及方法
一、核磁共振谱仪样品制备步骤以及方法样品的请求 1)样品纯度普通应>95% ,无铁屑、灰尘、滤纸毛等杂质。普通有机物须提供的样品量:1H谱>5mg,13C谱>15mg ,对聚合物所需的样品量应恰当增加。 2)普通请求,样品在某种氘代溶剂中有良好的溶解性能,送样者应提供样品的溶解度。常
实验室分析仪器核磁共振谱仪的性能指标分析
一、分辨率分辨率系指仪器分辨相邻谱线的能力。分辨率越高,谱线越窄,能被分开的两峰间距就越小。一般选用乙醇作标准品,测试仪器分辨率。乙醇的—CHO是一组四重峰,取其高峰的半高宽作为分辨率的指标,如图一所示。一般一起的分辨率在0.1-0.4Hz。图一 乙醇的醛基四重峰二、灵敏度灵敏度又称信噪比,是衡
实验室分析仪器核磁共振谱所需样品管的注意事项
对于5mm 探头来说,其中探头内部隔离样品和线圈的石英管内径只有5.4mm,如果样品管过粗或者弯曲,很容易卡在探头里甚至挤碎石英管;如果样品管过细或者有裂纹,很容易造成样品管在探头内破碎,污染探头。因此在使用样品管前,首先要在平面上滚动,确定平直;然后对灯光仔细检查有无裂纹;插入转子时要注意是否过紧