花粉管钙通道抑制后蛋白质组学研究

实验概要本实验运用蛋白质组学技术手段对钙通道受抑制后花粉管中蛋白质表达模式进行研究,以期鉴定出与Ca2 调节花粉管生长相关的蛋白质,拓展对Ca2 在花粉管生长调节机制的认识。主要设备IPGphor II等电聚焦系统(Amersham Biosciences,Sweden)ZipTipC18 (Millipore,MA,USA)电喷雾离子化串联质谱 (ESI-MS/MS,Micromass,UK)紫外分光光度计实验材料白皮松花粉实验步骤1. 材料培养白皮松花粉,置于以下三种培养基,25℃条件下摇床(120rpm)暗培养72h。培养基中所含DMSO浓度低于1%,该浓度对于花粉萌发和花粉管生长无影响。1) 15%蔗糖 0.01%H3BO3 0.01%CaCl2 (CKM)2) 15%蔗糖 0.01%H3BO3 0.01%CaCl2 100µM Nif3) 15%蔗糖 0.01%H3BO3 0.01%CaCl2 250µM Nif2. ......阅读全文

Nif对白皮松花粉萌发和花粉管生长的调节

实验概要本研究以白皮松花粉为实验材料,用不同浓度钙通道抑制剂Nif处理花粉和花粉管,结合Fluo-3AM荧光标记探讨Ca2 在白皮松花粉萌发和花粉管生长过程中的作用。此外运用Ca2 螯合剂及外加钙调素研究Ca2 包括细胞壁钙库对白皮松花粉萌发和花粉管生长作用。主要试剂1. 蔗糖、CaCl2和硼酸均用

Nif对白皮松花粉管细胞壁构建的影响

实验概要本实验研究了钙通道抑制剂Nif处理对花粉管细胞壁主要成分的分布及含量的影响。主要试剂1. 0.1%无色水溶性苯胺蓝:0.1 g水溶性苯胺蓝,用0.15 M K2HPO4(pH 8.2)溶解。新配制的溶液有色,碱性条件下经过数小时变成脱色溶液即可使用。2. Calcofluor (fluore

Nif对花粉管微丝骨架介导的胞吞、胞吐作用的调节

实验概要了解Nif对花粉管微丝骨架介导的胞吞、胞吐作用的调节作用。主要试剂FM4-64 (Molecular Probes,Inc. Eugene,OR)用DMSO溶解,配制成200µM的母液,-20℃避光保存。主要设备摇床激光共聚焦显微镜(ZEISS,META550)JEM-1230电子显微镜(J

中外团队揭示被子植物受精过程关键机制

  被子植物的受精过程是种子形成的关键环节。防止多个精细胞与卵细胞结合,即多精受精,对于维持后代基因组的稳定是非常重要的一件事。  3月19日,《自然》在线发表了山东农业大学与美国马萨诸塞大学阿默斯特分校共同完成的最新成果。经过多年努力,他们发现了被子植物阻止多个花粉管进入胚珠的分子机制。  论文第

中外研究团队揭示被子植物受精过程关键机制

  被子植物的受精过程是种子形成的关键环节。防止多个精细胞与卵细胞结合,即多精受精,对于维持后代基因组的稳定是非常重要的一件事。刚刚授粉的拟南芥花,摘掉了镜头前面的萼片和花瓣。段巧红供图  3月19日,《自然》在线发表了山东农业大学与美国马萨诸塞大学阿默斯特分校共同完成的最新成果。经过多年努力,他们

Nature子刊解决植物生殖生物学领域中的一个重要科学问题

  过去几十年中,植物生殖生物学领域的科学家们长期为一个重要的基础科学问题所困扰,那就是:带有尾巴的精子不仅可以运动而且自主控制运动方向,没有尾巴的高等植物精细胞不能运动只能由花粉管运输,那么植物的精细胞是否控制花粉管运输的方向呢?  近期来自北京大学生命科学学院的研究人员发表了题为“Sperm c

植物所在细胞极性生长研究领域取得新进展

FIMBRIN5缺失引起花粉管中微丝排布紊乱 (A为野生型花粉管,B-I为fim5-1花粉管,J对花粉管槽部微丝与细胞伸长轴的角度进行统计的结果)。  微丝细胞骨架控制细胞极性建立和细胞极性生长,但潜在的分子机理人们还知之甚少。中科院植物研究所信号转导与代谢组学研究中心的黄善金研究组对花粉中高度表达

NO调节花粉管生长过程中胞内外Ca2+的变化和细胞壁构建

关键词:NO;钙离子内流(Calcium influx);花粉管(Pollen tube);细胞壁(Cell wall);非损伤微测技术(SIET)。参考文献:Wang Yuhua, New Phytologist, 2009, 182: 851-862 全文下载:http://dmdb.ibcas

PNAS:CAP1在花粉管中介导顶端肌动蛋白聚合的分子机制

  肌动蛋白细胞骨架涉及许多基本的生理细胞过程。大多数基于肌动蛋白的功能(如果不是全部的话)由肌动蛋白的聚合形式进行。因此,该领域的核心问题是肌动蛋白单体如何快速组装成肌动蛋白丝并组织成不同的结构以满足各种生理和细胞过程的需要。CAP,在芽殖酵母中也称为Srv2p,已经成为这一过程中的重要参与者。它

促进被子植物种间遗传隔离的机制研究取得重要进展

  物种之间的遗传隔离是维持一个物种不与其他物种混杂的关键,有多种因素可以导致物种间的遗传隔离。160年前,英国博物学家达尔文用实验验证了一种植物的花粉在与其他物种花粉的竞争中“胜出”的现象,即后来称为“同种花粉优先”的现象。这种现象非常重要,维护了物种的纯系遗传。然而,在过去的一个多世纪中,人们对

促进被子植物种间遗传隔离的机制研究取得重要进展

  物种之间的遗传隔离是维持一个物种不与其他物种混杂的关键,有多种因素可以导致物种间的遗传隔离。160年前,英国博物学家达尔文用实验验证了一种植物的花粉在与其他物种花粉的竞争中“胜出”的现象,即后来称为“同种花粉优先”的现象。这种现象非常重要,维护了物种的纯系遗传。然而,在过去的一个多世纪中,人们对

非损显微测量技术在房南花粉管Ca2流速检测中的应用

  尽管植物缺乏许多调节哺乳动物细胞内钙浓度的机制,但它们仍然使用钙信号来帮助完成各种生理功能,其中许多功能仍未得到准确解释。   2018年5月4日,马里兰大学学者发表了一篇题为《花粉管Ca2内稳态下GLR通道的Cornichon分类与调控》的文章,主要研究花粉管Ca2内稳态的调控机理。   

非损伤微测技术应用于拟南花粉管Ca2+流速检测

植物虽然缺少很多在哺乳动物中调节细胞内钙离子浓度的机制,但是它们仍然利用钙离子信号来帮助完成多种生理功能,这其中仍有许多Ca2+调控机制还无法准确解释清楚。2018年5月4日,马里兰大学学者在Science上发表了一篇文章,题目为“CORNICHON sorting and regulation o

用离子流技术和荧光蛋白提高胞内外Ca2+和H+的时空分辨率

关键词:花粉管(Pollen tube),钙信号(Calcium signaling),质子信号(Proton signaling),细胞分化(Cell polarization)参考文献:Erwan Michard. et al. Sexual Plant Reproduction, 2008,

Science:揭示一种促进被子植物种间遗传隔离的分子机制

  2019年5月31日,北京大学生命科学学院、北大-清华生命科学联合中心瞿礼嘉教授课题组的研究论文“Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis”以长文形式在线发表在国际著名期刊Scien

转基因植物的原生质体融合和花粉管通道法介绍

  1、原生质体融合  将不同物种的原生质体进行融合,可实现两种基因组的结合。也可将一种细胞的细胞器,如线粒体或叶绿体与另一种细胞融合,此时,是一种细胞的细胞核处于两种细胞来源的细胞质中,这就形成了胞质杂种(cybrid)。  2、花粉管通道法  在授粉后向子房注射含目的基因的DNA溶液,利用植物在

遗传发育所揭示植物细胞膨压调控机制

  膨压普遍存在于植物细胞,与生长发育密切相关,但对其调控的分子机制了解非常有限。中国科学院遗传与发育生物学研究所杨维才研究组通过对植物花粉管进行研究,发现了一个影响花粉管体内生长的突变体turgor regulation defect 1 (tod1),其花粉管内钙离子浓度下降,在花柱内生长缓慢,

科研团队Cell发文揭示植物“自救”新机制

原文地址:http://news.sciencenet.cn/htmlnews/2023/7/505691.shtm 中国科学院遗传与发育生物学研究所李红菊研究组发现了雌配子直接通过分泌花粉管吸引信号恢复受精的机制,回答了为什么双受精失败,胚珠会持续吸引花粉管这一问题,也为回答自然界有些物种的助

中科院百人计划连发PNAS、Plant-cell

  中科院上海生命科学研究院“百人计划”研究员王永飞,主要研究植物细胞膜离子通道及相关信号传递机制,其中包括离子通道及其调控因子基因的克隆和离子通道在植物激素、CO2以及外源信号传递途径中的作用。近期,其带领的研究小组先后在国际著名学术期刊《PNAS》和《Plant Cell》发表重要学术成果。王永

遗传发育所揭示植物雌雄识别的分子机制

  受精需要精子和卵细胞的结合,而精子能否被及时地传递到卵子是受精的关键。在被子植物中,精子是通过花粉管来传递的,但花粉管是如何将精子传递到卵子的呢?这是植物生殖生物学几十年来关注的主要问题,也是杂交育种的技术瓶颈之一。日前,中国科学院遗传与发育生物学研究所杨维才研究组首次分离到了花粉管识别雌性吸引

中科院发表离子通道研究新成果

  双受精是开花植物特有的一种繁殖方式。在授粉过程中,花粉管通过接收和应答胚珠分泌的多种引诱物质将一对精细胞送入胚珠。其中一个精细胞与卵细胞融合产生合子,另一个与中央细胞融合产生胚乳。  已知花粉管导向需要花粉管顶部的钙离子梯度,而钙离子通道是调控钙离子梯度的核心,因此钙离子通道是花粉管导向的关键元

植物受精的“丘比特之箭”

  最近,日本名古屋大学的一组科学家成功地发现了AMOR——一个糖链分子,可增加植物的受精效率。他们发现,AMOR负责激活花粉管,以促使受精。此外,通过生物学家和化学家们之间的合作,该研究小组已经合成了一种二糖,即双糖,其表现出与AMOR相同的属性。这一发现将带来研究的进步,提高植物受精效率以及碳水

中国科学家发现植物雌雄识别的“钥匙”

  被子植物的花粉在空气中传播时如何“标同伐异”?中国科学家找到一把“钥匙”,首次分离到花粉管识别雌性吸引信号的受体蛋白复合体,并揭示了信号识别和激活的分子机制。  中国科学院遗传与发育生物学研究所杨维才研究员领导的研究组完成这项研究,研究成果已在线发表于最新一期《自然》杂志。  科学家们发现,被子

南京农大PLOS-Genetics发表植物遗传学成果

  7月22日,国际学术期刊《PLOS Genetics》在线刊登了南京农业大学和香港中文大学的一项最新研究成果,题为“Arabidopsis COG Complex Subunits COG3 and COG8 Modulate Golgi Morphology, Vesicle Traffick

氯离子外流通过肌醇3,4,5,6四磷酸盐调控花粉管的生长...

氯离子外流通过肌醇3,4,5,6-四磷酸盐调控花粉管的生长和细胞的体积花粉管生长是生物系统中自发组织的一个重要实例。在这些自发系统中,通过交互反馈通路传递信号,从而控制并调整分子及生化参数使之最适于生长和发挥作用。花粉作为一种研究植物细胞发育、生长以及生物生理学的模式材料,发现花粉管的振荡生长与Ca

土生土长,他们Cell发文揭示植物自救新机制

原文地址:http://news.sciencenet.cn/htmlnews/2023/8/505852.shtm7月28日晚,中国科学院遗传与发育生物学研究所(以下简称遗传发育所)一个主创“清一色国产”的科研团队在生物学顶刊《细胞》发文,回答了一个百余年来遗留的生物学问题——植物受精失败后,如何

三氟拉嗪处理后的白杄花粉管蛋白质组学研究

实验概要本实验运用双向电泳技术、计算机图像分析与大规模数据处理技术以及质谱技术研究了。钙调素调节的下游效应蛋白的表达模式和活性,通过鉴定这些蛋白、分析它们的表达模式以及它们依赖于Ca2 的与CaM的相互作用,将有助于我们了解钙-钙调素信号在时间和空间上的特异性,初步探讨了细胞如何通过钙-钙调素信号响

遗传发育所揭示受体蛋白激酶的内质网分选机制

  内质网是细胞内负责分泌蛋白合成、折叠和分选的细胞器。不同的分泌蛋白在正确折叠后被分选和运输到高尔基体或液泡等不同下游细胞器,进行进一步修饰、分选等过程。蛋白的分选是维持细胞稳定的基本机制之一,该机制保证了正确折叠的蛋白在正确的时间被运输到正确的位置。蛋白的分选发生异常,会导致细胞的稳态出现紊乱。

《Science》发表非损伤微测技术研究Ca2+流速的成果

D型丝氨酸调节谷氨酸受体基因构成的Ca2+通道2011年3月17日,葡萄牙里斯本大学José Feijó教授的研究成果在世界知名杂志《Science》以“Research Article”的形式在线发表,中国农业大学资源环境学院的刘来华教授参与了本项研究。细胞内游离Ca2+的增加构成了真核细胞基本的

三氟拉嗪对花粉管顶端胞吞胞吐活性和细胞器状态的影响

实验概要本实验主要应用荧光标记技术、透射电镜技术等手段,分析白杄花粉管中钙-钙调素信号系统受到抑制之后,细胞结构、细胞器分布与状态、胞吞/胞吐以及细胞超微结构等的变化。主要试剂1. FM4-64 (Molecular Probes,Inc. Eugene,OR) 用DMSO溶解,配制成200 µM的