Antpedia LOGO WIKI资讯

一氧化氮响应环境变化诱导运动可塑性的精确机制

一氧化氮(NO)是一种气体信使分子,已被揭示在心脑血管调节、神经、免疫调节、运动能力等方面发挥重要作用。一氧化氮合成酶(NOS)是NO合成过程的关键限速酶,直接调控细胞中的NO含量。目前,在脊椎动物中已经发现三种NOS 编码基因(neural NOS, inducible NOS, epitheial NOS),其转录调控机制已被陆续报道。然而,在较低等的无脊椎动物中只发现了一种NOS编码基因,其转录调控机制鲜有报道。 中国科学院动物研究所王宪辉研究组前期工作发现飞蝗中两个同源神经肽F,NPF1a及NPF2,以一种类似“双保险”的刹车机制,分别在磷酸化水平和转录水平上抑制一氧化氮合成酶(NOS)的活性,降低NO含量,进而调控飞蝗型变过程中的运动可塑性(Hou et al, 2017, eLife)。最近,研究人员进一步揭示出一个重要的转录因子CREB-B,介导了NPF2对NOS转录的抑制作用,参与飞蝗运动可塑性的调控。CR......阅读全文

一氧化氮响应环境变化诱导运动可塑性的精确机制

  一氧化氮(NO)是一种气体信使分子,已被揭示在心脑血管调节、神经、免疫调节、运动能力等方面发挥重要作用。一氧化氮合成酶(NOS)是NO合成过程的关键限速酶,直接调控细胞中的NO含量。目前,在脊椎动物中已经发现三种NOS 编码基因(neural NOS, inducible NOS, epithe

一氧化氮响应环境变化诱导运动可塑性的精确机制

  一氧化氮(NO)是一种气体信使分子,已被揭示在心脑血管调节、神经、免疫调节、运动能力等方面发挥重要作用。一氧化氮合成酶(NOS)是NO合成过程的关键限速酶,直接调控细胞中的NO含量。目前,在脊椎动物中已经发现三种NOS 编码基因(neural NOS, inducible NOS, epithe

在综合层面提供突触可塑性的调节运动控制

  作为基底神经节回路功能的运动控制对于生活和运动障碍的各个方面都至关重要,例如帕金森病 (PD)。在 PD 中,背侧纹状体中多巴胺的逐渐去神经支配导致直接通路的抑制和间接通路的促进,并导致丘脑底核 (STN) 和苍白球内部 (GPi) 的激活。 事实上,通过脑深部刺激 (DBS) 操纵 STN 或

eLife :发现调控飞蝗聚群过程的“双刹车”神经分子机制

  群聚现象广泛地存在于动物中。群聚的个体与独居的个体相比较通常表现出显着的个体间协助和行为可塑性以适应多变的生存环境。飞蝗是世界性的重大农业害虫,具有典型的聚群现象。其多种行为特征,如嗅觉行为及运动活性,可在群居型及散居型间相互转变,是研究聚群行为可塑性的理想模型。我国的科学家曾发现嗅觉、多巴胺

生态位可塑性

  物种如何竞争有限的资源,亦或是实现种间共存,是理解生物多样性控制的核心。资源分配可以促进共存,因为共生的两种植物即使需求同一种资源,其对应的来源也是不一样的。然而,在植物群落中,由于难以从土壤中磷的不同化学形态中直接定量磷含量,因此关于磷的养分分配的证据和发现到现在还很少。  为了解决这个问题,

干细胞的可塑性

  越来越多的证据表明,当成体干细胞被移植入受体中,它们表现出很强的可塑性。通常情况下,供体的干细胞在受体中分化为与其组织来源一致的细胞。而在某些情况下干细胞的分化并不遵循这种规律。1999年Goodell等人分离出小鼠的 肌肉干细胞,体外培养5天后,与少量的骨髓间质细胞一起移植入接受致死量辐射的小

研究发现大脑可塑性机制

  科学家首次以一种特定分子作为目标,该分子作用于单一类型的神经元连接,从而调节大脑功能,恢复了大脑自我连接的能力。  前不久,美国塔夫斯大学医学院与耶鲁大学医学院的科学家共同发现,一种新的分子机制对于大脑功能的成熟具有至关重要作用,同时,它还可用于恢复老年人大脑的可塑性。与之前研究不同的是,这是科

肿瘤脂代谢的可塑性

大多数肿瘤具有异常活化的脂质代谢能力,使其能够合成,延长和去饱和脂肪酸,以支持细胞增殖。不饱和脂肪酸的合成需要硬脂酰辅酶A去饱和酶(SCD),并且在之前的研究中发现SCD基因在前列腺癌、肝癌、肾癌、乳腺癌等中有过量表达。然而近期发表在《Nature》上的一篇研究却表明肝癌、肺癌细胞不受SCD抑制影响

环境刺激和神经可塑性

  一项研究发现,环境丰容在成年小鼠大脑中保存并恢复了青少年样的可塑性,并且保护成年小鼠免受中风诱导的可塑性削弱。暴露在充满物理、社会和认知刺激的环境中,已知能够促进大脑功能。环境丰容增强了神经路径对不同的体验做出响应从而变化的能力,甚至对成年动物起作用,成年动物的大脑通常比年轻的动物大脑的可塑性或

关于其他可能的神经递质的介绍

  一氧化氮具有许多神经递质的特征。某些神经元含有一氧化氮合成酶,该酶能使精氨酸生成一氧化氮。生成的一氧化氮从一个神经元弥散到另一神经元中,而后作用于鸟苷酸环化酶并提高其活力,从而发挥出生理作用。因此,一氧化氮是一个神经元间信息沟通的传递物质,但与一般递质有区别:  ①它不贮存于突触小泡中;  ②它