紫外可见吸收光谱产品原理及应用介绍

紫外可见吸收光谱产品原理 分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。 分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。它是带状光谱,反映了分子中某些基团的信息。可以用标准光图谱再结合其它手段进行定性分析。 根据Lambert-Beer定律说明光的吸收与吸收层厚度成正比,比耳定律说明光的吸收与溶液浓度成正比;如果同时考虑吸收层厚度和溶液浓度对光吸收率的影响,即得朗伯-比耳定律。即A=εbc,(A为吸光度,ε为摩尔吸光系数,b为液池厚度,c为溶液浓度)就可以对溶液进行定量分析。 ......阅读全文

紫外可见吸收光谱原理

紫外可见吸收光谱原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π

紫外可见吸收光谱原理

紫外可见吸收光谱原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π

紫外可见吸收光谱原理

1. 紫外可见吸收光谱产生的原理紫外可见吸收光谱是由于分子(或离子)吸收紫外或者可见光(通常200-800 nm)后发生价电子的跃迁所引起的。由于电子间能级跃迁的同时总是伴随着振动和转动能级间的跃迁,因此紫外可见光谱呈现宽谱带。紫外可见吸收光谱的横坐标为波长(nm),纵坐标为吸光度。紫外可见吸收光谱

紫外可见光谱工作原理

  I 影响紫外可见吸收光谱的因素共轭效应:体系形成大π键,使各能级间的能量差减小,从而电子跃迁的能量也减小,因此共轭效应使吸收发生红移。  溶剂效应:1.由于溶剂的存在使溶质溶剂发生相互作用,使精细结构消失。2.  对π→π*跃迁来讲,溶剂极性增大时,吸收带发生红移;对于n→π*跃迁来讲,吸收光谱

紫外可见吸收光谱的形成原理

原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π*四种类型,各种

紫外可见吸收光谱的形成原理

原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π*四种类型,各种

紫外可见吸收光谱的形成原理

原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π*四种类型,各种

紫外可见吸收光谱的形成原理

原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π*四种类型,各种

紫外可见吸收光谱产品原理及应用

紫外可见吸收光谱产品原理 分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收

紫外可见吸收光谱产品原理及应用

紫外可见吸收光谱产品原理分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的

紫外可见吸收光谱基本原理

1. 紫外可见吸收光谱产生的原理紫外可见吸收光谱是由于分子(或离子)吸收紫外或者可见光(通常200-800 nm)后发生价电子的跃迁所引起的。由于电子间能级跃迁的同时总是伴随着振动和转动能级间的跃迁,因此紫外可见光谱呈现宽谱带。紫外可见吸收光谱的横坐标为波长(nm),纵坐标为吸光度。紫外可见吸收光谱

紫外可见吸收光谱的紫外光谱

各种因素对吸收谱带的影响表现为谱带位移、谱带强度的变化、谱带精细结构的出现或消失等。谱带位移包括蓝移(或紫移,hypsochromic shift or blue shift))和红移(bathochromic shift or red shift)。蓝移(或紫移)指吸收峰向短波长移动,红移指吸收峰

紫外可见吸收光谱最主要的原理依据

紫外可见吸收光谱属于分子光谱,是根据价电子的跃迁而产生的,分子或者离子对紫外可见光的吸收所产生的紫外可见光谱及其吸收程度,对物质的组成、含量和结构而进行的分析、测定和推断。

紫外可见光谱的原理和应用范围

  紫外吸收光谱和可见吸收光谱都属于分子光谱,它们都是由于价电子的跃迁而产生的。利用物质的分子或离子对紫外和可见光的吸收所产生的紫外可见光谱及吸收程度可以对物质的组成、含量和结构进行分析、测定、推断。  紫外可见吸收光谱应用广泛,不仅可进行定量分析,还可利用吸收峰的特性进行定性分析和简单的结构分析,

紫外可见吸收光谱法的工作原理

紫外-可见吸收光谱的产生及基本原理2.1 物质对光的选择性吸收分子的紫外-可见吸收光谱是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析方法。当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的能量传递到了分子上。这样,处于稳定状态的基态分子就会跃迁到不稳定的高能态,即激发

紫外可见漫反射光谱基本原理

1.紫外可见光谱利用的哪个波段的光?紫外光的波长范围为:10-400 nm; 可见光的波长范围:400-760 nm; 波长大于760 nm为红外光。波长在10-200 nm范围内的称为远紫外光,波长在200-400 nm的为近紫外光。而对于紫外可见光谱仪而言,人们一般利用近紫外光和可见光,一般测试

紫外可见吸收光谱产品原理及应用介绍

  紫外可见吸收光谱产品原理   分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特

紫外可见漫反射光谱数据怎么转化为紫外可见吸收光谱

如果你的样品,没有透射的话,那么直接用 1-R 去计算吸收就可以了

紫外可见光谱仪的应用和原理

紫外/可见光谱仪,是利用紫外可见光谱法工作的仪器。普通紫外可见光谱仪,主要由光源、单色器、样品池(吸光池)、检测器、记录装置组成。紫外/可见光谱仪设计一般都尽量避免在光路中使用透镜,主要使用反射镜,以防止由仪器带来的吸收误差。当光路中不能避免使用透明元件时,应选择对紫外/可见光均透明的材料(如样品池

紫外可见光谱仪的应用和原理

紫外/可见光谱仪,是利用紫外可见光谱法工作的仪器。普通紫外可见光谱仪,主要由光源、单色器、样品池(吸光池)、检测器、记录装置组成。紫外/可见光谱仪设计一般都尽量避免在光路中使用透镜,主要使用反射镜,以防止由仪器带来的吸收误差。当光路中不能避免使用透明元件时,应选择对紫外/可见光均透明的材料(如样品池

紫外可见光谱仪的应用和原理

紫外/可见光谱仪,是利用紫外可见光谱法工作的仪器。普通紫外可见光谱仪,主要由光源、单色器、样品池(吸光池)、检测器、记录装置组成。紫外/可见光谱仪设计一般都尽量避免在光路中使用透镜,主要使用反射镜,以防止由仪器带来的吸收误差。当光路中不能避免使用透明元件时,应选择对紫外/可见光均透明的材料(如样品池

紫外可见光谱仪的应用和原理

紫外/可见光谱仪,是利用紫外可见光谱法工作的仪器。普通紫外可见光谱仪,主要由光源、单色器、样品池(吸光池)、检测器、记录装置组成。紫外/可见光谱仪设计一般都尽量避免在光路中使用透镜,主要使用反射镜,以防止由仪器带来的吸收误差。当光路中不能避免使用透明元件时,应选择对紫外/可见光均透明的材料(如样品池

简述紫外可见吸收光谱的基本原理

  紫外可见吸收光谱的基本原理是利用在光的照射下待测样品内 部的电子跃迁,电子跃迁类型有:  (1)σ→σ* 跃迁 指处于成键轨道上的 σ 电子吸收光子后被激发跃迁到 σ* 反键轨道  (2)n→σ* 跃迁 指分子中处于非键轨道上的 n 电子吸收能量后向 σ*反键轨 道的跃迁  (3)π→π* 跃迁

紫外可见光谱仪的应用和原理

紫外/可见光谱仪,是利用紫外可见光谱法工作的仪器。普通紫外可见光谱仪,主要由光源、单色器、样品池(吸光池)、检测器、记录装置组成。紫外/可见光谱仪设计一般都尽量避免在光路中使用透镜,主要使用反射镜,以防止由仪器带来的吸收误差。当光路中不能避免使用透明元件时,应选择对紫外/可见光均透明的材料(如样品池

紫外/可见吸收光谱测量

荷兰Avantes公司突破了传统分光光度计采用转动光栅进行光谱扫描的技术,使用2048像素CCD阵列探测器和平面衍射光栅,实现了不必转动光栅而对整个光谱的快速测量,每秒可实现900幅光谱的超高速采样,保证了测量的准确性和重复性,同时搭配浸入式光纤探头或流通池进行取样,从而适用于野外测量、应急检测、在

紫外/可见吸收光谱测量

荷兰Avantes公司突破了传统分光光度计采用转动光栅进行光谱扫描的技术,使用2048像素CCD阵列探测器和平面衍射光栅,实现了不必转动光栅而对整个光谱的快速测量,每秒可实现900幅光谱的超高速采样,保证了测量的准确性和重复性,同时搭配浸入式光纤探头或流通池进行取样,从而适用于野外测量、应急检测、在

紫外—可见吸收光谱的产生

4.1.1.1 分子光谱和电子光谱紫外—可见分光光度法是利用某些物质的分子对波长范围在200~800nm的电磁波的吸收作用来进行分析测定的一种方法。分子的紫外—可见吸收光谱是由价电子能级的跃迁而产生的。分子,甚至是最简单的双原子分子的光谱,也要比原子光谱复杂得多。这是由于在分子中,除了电子相对于原子

紫外可见吸收光谱的性质

1. 同一浓度的待测溶液对不同波长的光有不同的吸光度;2. 对于同一待测溶液,浓度愈大,吸光度也愈大;3. 对于同一物质,不论浓度大小如何,很大吸收峰所对应的波长(很大吸收波长 λmax) 相同,并且曲线的形状也完全相同。

紫外可见吸收光谱法

分子的紫外-可见吸收光谱法是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析法。分子在紫外-可见区的吸收与其电子结构紧密相关。紫外光谱的研究对象大多是具有共轭双键结构的分子。胆甾酮(a)与异亚丙基丙酮(b)分子结构差异很大,但两者具有相似的紫外吸收峰。两分子中相同的O=C-C=C共轭结构

紫外—可见吸收光谱的产生

4.1.1.1 分子光谱和电子光谱紫外—可见分光光度法是利用某些物质的分子对波长范围在200~800nm的电磁波的吸收作用来进行分析测定的一种方法。分子的紫外—可见吸收光谱是由价电子能级的跃迁而产生的。分子,甚至是最简单的双原子分子的光谱,也要比原子光谱复杂得多。这是由于在分子中,除了电子相对于原子