原子发射光谱(ICP/AES)理论知识(8)——检测器

原子发射光谱(ICP/AES)理论知识(8)——检测器 在原子发射光谱中,被检测的信号是元素的特征辐射,常用的检测方法有目视法,摄谱法和光电法。 一、 目视法 目视法是用眼睛观察试样中元素的特征谱线或谱线组,以及比较谱线强度的大小来确定试样的组成及含量。由于眼睛感色范围有限,工作波段仅限于可见光区400~700nm范围。常用的仪器称看谱镜,是一种小型简易的光谱仪,主要用于合金钢、有色金属合金的定性和半定量分析。 二、 摄谱法 摄谱法是将感光板置于分光系统的焦面处,接受被分析试样的光谱的作用而感光(摄谱),再经过显影、定影等操作制得光谱底片,谱片上有许多距离不等、黑度不同的光谱线。然后.在映谱仪上观察谱线的位置及大致强度,进行定性分析及半定量分析;在测微光度计上测量谱线的黑度,进行光谱定量分析。 感光板上谱线的黑度与曝光量有关,曝光量越大,谱线愈黑。曝光量用H表示,它等于照度E与曝光时间的乘积,而照度又与辐射强......阅读全文

气相色谱仪原子发射检测器概述

微波诱导等离子体原子发射检测器气相色谱仪(GC-MIP-AED)由气相色谱仪、原子发射检测器(又称原子发射光谱仪)、气相色谱仪与原子发射检测器之间的接口和数据数据处理系统等组成。原子发射检测器是近年飞速发展起来的多元素检测器,应用领域在不断扩大,是一种十分有发展前景的气相色谱检测器。 原子发射检测器

气相色谱仪原子发射检测器检测条件

气相色谱仪原子发射检测器的检测条件除一般GC分离条件外,还包括元素发射谱线波长、同时检测的元素组、AED中吹扫气流速、窗口吹扫气流速、传输线、凹腔谐振腔加热温度、反应气体类型及流速等。其中元素发射谱线波长、同时检测的元素组、AED中吹扫气流速和窗口吹扫气流速等基本为固定值,不需经常变动。一、传输线和

气相色谱仪原子发射检测器的工作原理

气相色谱仪原子发射检测器是利用等离子体作激发光源,使进入检测器的被测组分原子化,然后原子被激发至激发态,再跃迁至基态,发射出原子光谱,根据这些线光谱的波长和强度可进行定性和定量分析。这些线光谱是原子或原子离子而不是分子被激发后发射的,故此检测器有原子发射检测器之称。微波是频率范围为300MHz

气相色谱仪与原子发射检测器的接口

微波诱导等离子体原子发射检测器气相色谱仪(GC-MIP-AED)由气相色谱仪、原子发射检测器(又称原子发射光谱仪)、气相色谱仪与原子发射检测器的接口和数据数据处理系统等组成。接口由传输线、加热系统、凹腔谐振腔、放电管、溶剂放空系统和微波发生器等组成。一、传输线和加热系统:传输线的内层为不锈钢管,凹腔

原子发射光谱(ICP/AES)理论知识(8)——检测器

  原子发射光谱(ICP/AES)理论知识(8)——检测器  在原子发射光谱中,被检测的信号是元素的特征辐射,常用的检测方法有目视法,摄谱法和光电法。  一、  目视法  目视法是用眼睛观察试样中元素的特征谱线或谱线组,以及比较谱线强度的大小来确定试样的组成及含量。由于眼睛感色范围有限,工作波段仅限

原子发射光谱

原子吸收光谱法是本世纪50年代中期出现并在以后逐渐发展起来的一种新型的仪器分析方法,这种方法根据蒸气相中被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素的含量。它在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。

原子发射光谱

原子发射光谱法,是利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析的。原子发射光谱法可对约70种元素(金属元素及磷、硅、砷、碳、硼等非金属元素)进行分析。在一般情况下,用于1%以下含量的组份测定,检出限可达ppm,精密度为±10%左右,线性范围

荧光检测器发射光谱

  般所说的荧光光谱,实际上仅指荧光发射光谱。它是在激发单色器波长固定时,发射单色器进行波长扫描所得的荧光强度随荧光波长(即发射波长,Em)变化的曲线。荧光光谱可供鉴别荧光物质,并作为荧光测定时选择合适的测定波长的依据。  另外,由于荧光测量仪器的特性,使光源的能量分布、单色器的透射率和检测器的响应

原子发射光谱、原子吸收光谱

  原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。  原 子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基态时,称为共振跃迁。

原子吸收和原子发射的本质区别

原子吸收和原子发射的谱线是一致的。原子吸收是吸收谱线,电磁波穿透原子蒸汽时,特定波长被吸收改变自身电子能级,然后向各方向发射,原方向的该波长电磁波就减少了。原子发射是受激发射谱线,受热或电激发,原子的电子激发到高能轨道,然后放出特定波长的电磁波回到低能轨道,通常是基态,可测定所释放的电磁波频率。

原子发射光谱法

  用高压放电、等离子焰炬、激光等手段可将原子或离子激活成激发态。激发态是不稳定的,容易发射出相应特征频率的光子返回到基态或低(亚)激发态而呈现一系列特征光谱线。这些特征光谱线经过光学色散系统分别被会聚在感光板上或被光电器件所接收,根据特征谱线的波长及强度对元素进行定性或定量分析,这便是原子发射光谱

什么叫原子发射光谱

原子发射光谱(AES):原子发射光谱法,是根据每种化学元素的原子或离子在热激发或电激发下,从激发态回到基态时发射的特征谱线,进行元素定性、半定量和定量分析的方法。它是光学分析中产生与发展最早的一种分析方法,却也是原子光谱技术研究中较为薄弱的一个部分。

原子吸收(发射)光谱法

方法提要试样经氢氟酸、硫酸分解,在!(H2SO4)=1%介质中,在原子吸收光谱仪上,使用空气-乙炔火焰,以硫酸钾作消电离剂,于波长670.8nm、780.0nm、852.1nm处,分别测定锂、铷、铯的吸光度或发射强度。一般常见元素均不干扰测定。测定范围0.001%~4.00%。仪器原子吸收光谱仪。试

原子吸收(发射)光谱法

方法提要试样经氢氟酸、硫酸分解,在!(H2SO4)=1%介质中,在原子吸收光谱仪上,使用空气-乙炔火焰,以硫酸钾作消电离剂,于波长670.8nm、780.0nm、852.1nm处,分别测定锂、铷、铯的吸光度或发射强度。一般常见元素均不干扰测定。测定范围0.001%~4.00%。仪器原子吸收光谱仪。试

原子吸收(发射)光谱法

方法提要试样经氢氟酸、硫酸分解,在!(H2SO4)=1%介质中,在原子吸收光谱仪上,使用空气-乙炔火焰,以硫酸钾作消电离剂,于波长670.8nm、780.0nm、852.1nm处,分别测定锂、铷、铯的吸光度或发射强度。一般常见元素均不干扰测定。测定范围0.001%~4.00%。仪器原子吸收光谱仪。试

原子发射光谱的概念

原子发射光谱(AES):原子发射光谱法,是根据每种化学元素的原子或离子在热激发或电激发下,从激发态回到基态时发射的特征谱线,进行元素定性、半定量和定量分析的方法。它是光学分析中产生与发展最早的一种分析方法,却也是原子光谱技术研究中较为薄弱的一个部分。

原子发射光谱定性原理

  原子发射光谱是价电子受到激发跃迁到激发态,再由高能态回到较低的能态或基态时,以辐射形式放出其激发能而产生的光谱。  定性原理  原子发射光谱法的量子力学基本原理如下:  (1)原子或离子可处于不连续的能量状态,该状态可以光谱项来描述;  (2)当处于基态的气态原子或离子吸收了一定的外界能量时,其

原子发射光谱法

  许多的原子/离子在高温灼烧的时候,价层电子会被激发到高能级的轨道。由于不稳定,又会自动跃迁会低能级。在这个过程中,多余的能量会以光子的形式发射出来。由于不同原子/离子的价层电子所处能级不同,以及价层电子数量的区别,导致在灼烧的时候所发射出来的光线会有自己的独特性。  原子发射光谱法就是利用物质原

原子发射光谱的产生

  根据原子的特征发射光谱来研究物质的结构和测定物质的化学成分的方法称为“原子发射光谱分析”。原子发射光谱法是光学分析法中产生与发展zui早的一种。 原子发射光谱法是利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析的方法。发射光谱通常用化学火焰

原子吸收,原子荧光以及原子发射的区别和联系

原子荧光光谱:原子荧光光谱是基于基态原子吸收特定波长光辐射的能量而被激发至高能态,受激原子在去激发过程中发射出的一定波长的光辐射,根据这一原理制成的可以检测元素含量的仪器叫原子荧光光谱仪(光度计),比如SK-2003A,线性宽度大于三个数量级,重复性小于百分之0.6%。原子发射光谱:原子在受到热或电

原子荧光,原子吸收和原子发射的区别和特点

原子在受到热或电的激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱叫做原子发射光谱,而根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法称为原子发射光谱法。ICP-AES的特点是可以进行多元素检测,选择性高,检出限低,准确度高。 原子荧光光谱是基于基态原子吸收特定

原子吸收,原子荧光以及原子发射的区别和联系

首先,共同点就是都属于原子光谱类的仪器。利用原理可以检测物质的组成。 不同点是首先是原理不同:发射光谱是原子在受到热或电的激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱;原子荧光光谱是基于基态原子吸收特定波长光辐射的能量而被激发至高能态,受激原子在去激发过程中发射出的一定波长的光辐射,根

原子吸收光谱和原子发射光谱区别

      原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。  原子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基态时,称为共振

原子吸收光谱和原子发射光谱区别

原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。   原 子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基

原子吸收光谱和原子发射光谱区别

  原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。  原 子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基态时,称为共振跃迁。

原子吸收光谱和原子发射光谱区别

原子吸收光谱和原子发射光谱区别如下:吸收光谱和发射光谱都是线谱,区别在于前者显示黑色线条,而发射光谱显示光谱中的彩色线条。发射光谱:给样品以能量,比如原子发射光谱,原子外层电子由基态到激发态,处于激发态电子不稳定,会以光辐射的形式是放出能量,而回到基态或较低的能级.得到线状光谱。吸收光谱:用一定波长

发射光谱荧光检测器的简介

  一般所说的荧光光谱,实际上仅指荧光发射光谱。它是在激发单色器波长固定时,发射单色器进行波长扫描所得的荧光强度随荧光波长(即发射波长,Em)变化的曲线。荧光光谱可供鉴别荧光物质,并作为荧光测定时选择合适的测定波长的依据。  另外,由于荧光测量仪器的特性,使光源的能量分布、单色器的透射率和检测器的响

关于原子发射光谱的介绍

  原子发射光谱法(Atomic Emission Spectrometry,AES),是利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析的。原子发射光谱法可对约70种元素(金属元素及磷、硅、砷、碳、硼等非金属元素)进行分析。在一般情况下,用于

原子发射光谱法原理

原子发射光谱法(AES),是利用原子或离子在一定条件下受激而发射的特征光谱来研究物质化学组成的分析方法。根据激发机理不同,原子发射光谱有3种类型:  ①原子的核外光学电子在受热能和电能激发而发射的光谱,通常所称的原子发射光谱法是指以电弧、电火花和电火焰(如ICP等)为激发光源来得到原子光谱的分析方法

原子发射光谱理论知识

原子发射光谱法,是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。在正常状态下,原子处于基态,原子在受到热(火焰)或电(电火花)激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱(线状光谱)。原子发射光谱法包括了三个主要的过程,即:1、由光源提供能量使样品蒸发、形