碱基编辑器的效能差异并构建可编辑致病突变数据库
近日,中国科学院上海营养与健康研究所杨力研究组与上海科技大学生命科学与技术学院陈佳研究组通过合作,系统揭示了一系列具有代表性的基因组碱基编辑器(baseeditor)的效能差异,并进一步构建了可利用20种已报道碱基编辑器进行编辑的人类疾病相关单碱基突变位点的数据库(BEable-GPS, Base Editable prediction of Global Pathogenic SNVs),相关成果以Comparison of cytosine base editors and development of the BEable-GPS database for targeting pathogenic SNVs 为题,于10月22日在线发表在国际学术期刊Genome Biology上。 由CRISPR/Cas基因编辑酶(如Cas9, Cpf1等)与胞嘧啶脱氨编辑酶(如APOBEC等)整合而成的胞嘧啶碱基编辑系统,可在单碱......阅读全文
天津工生所在微生物碱基编辑器产物决定机制研究获进展
不需要外源DNA模板的碱基编辑已成为微生物基因编辑的重要技术之一。目前,微生物碱基编辑器主要可实现C-to-T和A-to-G的碱基转换,糖基化酶碱基编辑器(GBE)可在大肠杆菌中实现C-to-A颠换,而有限的碱基编辑产物类型限制了碱基编辑技术的应用,微生物中碱基编辑器的产物决定机制仍不清晰。
我国学者成功开发基于脱氨酶APOBEC的新型普适碱基编辑器
中国科学院上海生命科学研究院(营养与健康院)中国科学院-马普计算生物学研究所杨力研究组与上海科技大学生命学院陈佳研究组和黄行许研究组合作,成功开发出一系列基于人胞嘧啶脱氨酶APOBEC的新型普适碱基编辑器,其中基于人APOBEC3A(hA3A)的碱基编辑器可高效介导甲基化胞嘧啶mC到胸腺嘧啶T的
研究基于学习算法优化序列特异性的CtoG单碱基编辑器
8月12日,Nature Communications发表了题为Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods的研究论文,该研
David-Liu首次通过AAV病毒载体在动物体内进行碱基编辑作用
碱基编辑器用于研究和治疗遗传性疾病的成功取决于将其体内传递给相关细胞类型的能力。通过腺相关病毒(AAV)的传送受AAV打包能力的限制(AAV的基因组包装大小限制为≤5kb),因此无法使用全长碱基编辑器。 2020年1月14日,博德研究所David Liu团队在Nature Biomedical
天津工生所实现单窗口碱基编辑
碱基编辑器主要有3种类型:胞嘧啶碱基编辑器(cytosine base editor, CBE)、腺嘌呤碱基编辑器(adenine base editor, ABE)和糖基化酶碱基编辑器(Glycosylase base editor,GBE),它们在不需要DNA双链断裂和编辑模板的情况下可分别
科学家提出基因编辑领域发展新方向
4月18日,中国科学院上海营养与健康研究所研究员杨力与上海科技大学生命技术学院教授陈佳、上海科技大学免疫化学研究所副研究员杨贝,应邀在国际学术期刊《自然-生物技术》(Nat Biotechnol)上发表题为To BE or not to BE, that is the question 的新闻与
组成碱基对的碱基有哪些?
组成碱基对的碱基包括A、G、T、C、U。严格地说,碱基对是一对相互匹配的碱基(即A:T,G:C,A:U相互作用)被氢键连接起来。
细胞化学基础碱基的种类修饰碱基
DNA和RNA分子中还含有核酸链形成后经过修饰形成的其它非主要碱基。这些碱基大多是在上述嘌呤或嘧啶碱的不同部位甲基化(methylation)或进行其它的化学修饰而形成的衍生物。DNA中最常见的修饰碱基是5-甲基胞嘧啶(m5C)。RNA中有许多修饰的碱基,包括核苷类假尿苷(Ψ)、二氢尿苷(D)、肌苷
单碱基基因编辑研究进展速览
本文中,小编整理了近年来科学家们在单碱基基因编辑研究领域取得的新进展,分享给大家! 【1】Nat Commun:科学家首次在猪身上实现多位点单碱基编辑 doi:10.1038/s41467-019-10421-8 近日,中国科学院广州生物医药与健康研究院赖良学课题组利用单碱基编辑器首次在猪
碱基编辑研究获进展,为工业菌株改造提供新思路
链霉菌是许多重要天然产物的生产者,其基因组蕴含着大量未被开发的次级代谢生物合成基因簇。传统的基于双链断裂的CRISPR/Cas9技术虽然已应用于链霉菌的基因组编辑,但需提供外源修复模板,且在多位点同时编辑的应用上仍有局限性。近年来,单碱基编辑技术已应用于天蓝色链霉菌等一些模式菌株中,相较于传统C
中国科学家成功修复致病基因推动胚胎编辑技术用于医疗
参考消息网8月23日报道 美媒称,美国的科学家可能会开始研究下一代基于Crispr的基因工具,但是中国正在以最快的速度将这些技术推向人类治疗。中国研究人员最先Crispr猴子和无活力的胚胎,并将用Crispr技术编辑过的细胞植入人体。现在,中国的一个科学家团队使用了尖端的Crispr技术(即碱基
碱基互补配对原则的碱基互补的介绍
在脱氧核糖核酸分子中,含氮碱基为腺嘌呤(A),鸟嘌呤(G),胞嘧啶(C)和胸腺嘧啶(T)。每一种碱基与一个糖和一个磷酸结合形成一种核苷酸。在其双链螺旋结构中,磷酸-糖-磷酸-糖的序列,构成了多苷酸主链。在主链内侧连结着碱基,但一条链上的碱基必须与另一条链上的碱基以相对应的方式存在,即腺嘌呤对应胸
重磅!利用CRISPR技术成功修复人类胚胎中的基因突变
8月13日,这项成果以“Correction of the Marfan Syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos”为题发表在《Molecular Thera
碱基的定义
碱基,在生物化学中又称核碱基、含氮碱基,是形成核苷的含氮化合物,核苷又是核苷酸的组分。碱基、核苷和核苷酸等单体构成了核酸的基本构件。核碱基间可以形成碱基对,且彼此堆叠,所以,它们是长链螺旋结构,例如核糖核酸(RNA)和脱氧核糖核酸(DNA)的重要组成部分。
什么是碱基?
碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。
什么是碱基?
碱基,在化学中本是“碱性基团”的简称。有机物中大部分的碱性基团都含有氮原子,称为含氮碱基,氨基(-NH2)是最简单的含氮碱基。碱基,在生物化学中又称核碱基、含氮碱基,是形成核苷的含氮化合物,核苷又是核苷酸的组分。碱基、核苷和核苷酸等单体构成了核酸的基本构件。核碱基间可以形成碱基对,且彼此堆叠,所以,
一文读懂代码编辑器
代码编辑器Python解释器、pip工具箱和virtuanlenv虚拟环境都安装好了后,基本的Python环境就搭建好了,可以开始我们的“搬砖”之旅了。但是现在还缺一个好用的编辑器,这里推荐大家用pycharm。当然如果你有一些其他的编辑器也可以,比如sublime_text,notepad
PADS的元件编辑器怎么使用?
在logic软件当中创建新的元件和元件库,都需要先进入到元件编辑器。执行【工具】-【元件编辑器】菜单命令,系统会进入元件编辑界面,如图1-1所示。图1-1 元件编辑器界面在元件编辑器页面中,有两个常用的命令,即【编辑】-【元件类型编辑器】命令(对应工具栏的图标),和【编辑】-【CAE封装编
单碱基编辑获重大进展-有望出生前就可治疗遗传病
9月10日,在《自然》子刊《Nature Medicine》上刊登的两篇科学论文中,宾夕法尼亚大学和苏黎世联邦理工学院的两个不同团队,使用基于CRISPR系统的碱基编辑器,成功在小鼠模型中治疗了由于基因突变导致的罕见肝脏疾病。其中宾夕法尼亚大学的团队成功在小鼠出生以前就可治疗它们患上的遗传病。
上海科技大学等团队构建新型高精准碱基编辑系统
上海科技大学生命科学与技术学院教授陈佳、免疫化学研究所教授杨贝,中科院上海营养与健康研究所研究员杨力与武汉大学医学研究院教授殷昊合作研究构建了一种高精准碱基编辑系统,并依据其特性命名为变形式碱基编辑系统(简称tBEs)。5月10日,该研究成果在线发表于《自然—细胞生物学》。 据悉,研究人员利
人造碱基能像天然碱基参与DNA复制
据物理学家组织网近日报道,新加坡科学家在最新一期《德国应用化学国际版》期刊上发表论文称,他们开发出一种遗传代码扩增技术,并合成出两种能够配对的人造碱基。通过X射线结晶技术分析表明,人造碱基对拥有与天然碱基对几乎完全相同的结构特征。使用新碱基对可以合成全新DNA片段,更好地检测病毒感染情况。
CRISPR技术再升级——单碱基的精准编辑
CRISPR/Cas9基因组编辑系统来源于简单的细菌免疫系统组分,经过改造后可在真核细胞中实现高度灵活且特异的基因组编辑。该系统是单RNA(single-guide RNA, sgRNA) 介导的核酸酶系统,通过靶点特异的CRISPR RNA (crRNA)序列与靶序列进行碱基配对从而引导Cas
中国科学家利用CRISPR技术成功修复人类胚胎中基因突变
基因编辑技术发展势如破竹,遗传性疾病的有效治疗显得日益迫切。近日,来自上海科技大学的黄行许教授和广州医科大学附属第三医院的刘见桥教授领导的研究小组利用最新CRISPR技术成功纠正了胚胎中的马凡综合症(MFS)致病突变。这一研究成果代表着在重塑人类胚胎DNA的尝试基础上取得了重大突破。 8月13
人分裂期胚胎介导高效的单碱基编辑研究获进展
5月23日,Genome Biology 发表了一篇题为《人分裂期胚胎介导高效的单碱基编辑》的研究论文,该研究由中国科学院神经科学研究所(中国科学院脑科学与智能技术卓越创新中心)、上海脑科学与类脑研究中心、神经科学国家重点实验室、中国科学院灵长类神经生物学重点实验室杨辉研究组与上海交通大学仁济医
互补碱基的DNA和RNA的主要碱基的差别
胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,G
注射一次PCSK9可降低LDL90%,持续10个月!
PCSK9(前蛋白转化酶枯草杆菌蛋白酶/kexin9型)能参与调节肝低密度脂蛋白(LDL)受体的生命周期。研究发现,人体中PCSK9的功能获得性突变与家族性高胆固醇血症有关,而PCSK9的功能丧失性突变则会导致LDL胆固醇浓度降低,能预防冠心病,这使得PCSK9成为动脉粥样硬化性心血管疾病治疗中
碱基编辑将为镰状细胞病的治疗提供新策略
由麻省理工学院(MIT)、哈佛大学(Harvard)布罗德研究所(Broad Institute of MIT)和圣犹大儿童研究医院领导的一个团队展示了一种基因编辑方法,可以有效纠正患者血液干细胞和小鼠体内SCD的突变。 镰状细胞病(SCD)是最常见的致命遗传疾病,每年影响全球超过30万新生
腺嘌呤碱基编辑有望治疗α1抗胰蛋白酶缺乏症
单基因疾病α-1-抗胰蛋白酶缺乏症(Alpha-1 antitrypsin deficiency, AATD)是一种常见的遗传性疾病,会影响肝脏和肺部。一项新的研究显示一种新的基因编辑形式能够有效地校正AATD患者细胞中的突变。这种称为腺嘌呤碱基编辑的新方法与包括CRISPR在内的其他编辑形式不
基因编辑器:编出新生命
细菌也有敌人,其最大的敌人之一是噬菌体,因为后者可以进攻和吞食细菌。面对攻击,细菌最有效的还击是,“祭”出一种武器CRISPR,以保护自身。CRISPR有些拗口,称为规律成簇间隔短回文重复,实际上就是一种基因编辑器(又称为CRISPR-Cas9系统),是细菌用以保护自身对抗病毒的
千碱基的定义
中文名称千碱基英文名称kilobase;kb定 义描述多核苷酸链的长度单位,相当于单链核酸中1000个碱基。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)