ABA对气孔关闭影响的实验检测

【原理】 植物内源激素ABA(脱落酸)能使气孔关闭,降低叶片蒸腾速率,外源ABA也有同样的作用。可以用称量法、镜检法直接或间接地测量气孔开度,以检验外源ABA的作用,加深了解ABA的生理功能。 【仪器与用具】 显微镜1台(附接目测微尺);温箱1台;感量0.001g天平;25ml烧杯6只;10ml移液管3支;剪刀1把;尖头镊子1把;光源;载玻片和盖玻片等。 【试剂】 100mg/L ABA:10μg ABA溶于100ml水中; 蒸馏水;无水乙醇; 10%醋酸纤维素丙酮溶液:称醋酸纤维素1g,加纯丙酮10ml溶解即可。 【方法】 1. ABA对小麦叶片气孔开度的影响 (1)取样 选择照光培养,生长均匀,约10天苗龄的小麦,取第一麦叶为材料,剪取长10cm切段共60段。 (2)设置处理 取6只25mL烧杯(直径尽量一致),分成三组,每组2只,按下表进行处理,即第一组每杯加蒸馏水1......阅读全文

ABA对气孔关闭影响的实验检测

【原理】 植物内源激素ABA(脱落酸)能使气孔关闭,降低叶片蒸腾速率,外源ABA也有同样的作用。可以用称量法、镜检法直接或间接地测量气孔开度,以检验外源ABA的作用,加深了解ABA的生理功能。 【仪器与用具】 显微镜1台(附接目测微尺);温箱1台;感量0.001g天平;25ml烧杯6只;10m

分析脱落酸对气孔关闭的影响

一、原理植物内源激素ABA(脱落酸)能使气孔关闭,降低叶片蒸腾速率,外源ABA也有同样的作用。可以用称量法、镜检法直接或间接地测量气孔开度,以检验外源ABA的作用,加深了解ABA的生理功能。二、仪器与用具显微镜1台(附接目测微尺);温箱1台;感量0.001g天平;25ml烧杯6只;10ml移液管3支

关于脱落酸引起气孔关闭的作用介绍

  调节气孔开度。ABA调控气孔关闭的信号转导途径有两条:促进气孔关闭和抑制气孔张开。在缺水条件下,植物叶子中ABA的含量增多,引起气孔关闭。这是由于ABA促进钾离子、氯离子和苹果酸离子等外流,就促进气孔关闭。用ABA水溶液喷施植物叶子,可使气孔关闭,降低蒸腾速率。因此,ABA可作为抗蒸腾剂。另外,

脱落酸的主要作用

促进脱落从脱落酸的名称可知、加速植物器官脱落是ABA的一个重要生理作用。促进落叶物质的检定法关于ABA引起叶、花和果实的脱落问题,存在不同的看法。Addicott(1982)作为ABA的发现者之一,根据大量事实认为内源ABA促进脱落的效应是肯定的。但用ABA作为脱叶剂的田间试验尚未成功。这可能是由于

脱落酸的作用介绍

促进脱落从脱落酸的名称可知、加速植物器官脱落是ABA的一个重要生理作用。促进落叶物质的检定法关于ABA引起叶、花和果实的脱落问题,存在不同的看法。Addicott(1982)作为ABA的发现者之一,根据大量事实认为内源ABA促进脱落的效应是肯定的。但用ABA作为脱叶剂的田间试验尚未成功。这可能是由于

遗传发育所茉莉酸调控植物免疫机理研究取得进展

  由两个保卫细胞所组成的气孔是植物与外界环境进行水分和气体交换的重要通道,同时也是病原菌入侵植物的天然通道。遇到病原菌侵害时,植物会主动关闭气孔以阻止病原菌的入侵。为了打破植物的这种防御机制,病原菌产生冠菌素(COR),使气孔重新开张,以促进其顺利进入植物体内。一般认为,植物激素脱落酸(ABA)在

上海生科院发现ABA信号途径与光信号途径互作新机制

  3月21日,国际学术期刊The Plant Cell 发表了中国科学院上海生命科学研究院植物生理生态研究所王永飞研究组题为S-type Anion Channels SLAC1 and SLAH3 Function as Essential Negative Regulators of Inwa

气孔的开闭机理

  气孔的开关与保卫细胞的水势有关,保卫细胞水势下降而吸水膨胀,气孔就张开,水势上升而失水缩小,使气孔关闭。  引起保卫细胞水势的下降与上升的原因主要存在以下学说。  淀粉-糖转化学说  (starch-sugar conversion theory)  光合作用是气孔开放所必需的。黄化叶的保卫细胞

植物如何应对地下缺水并响应干旱胁迫-多肽长距离运输

   2018年4月,Nature杂志在线发表了来自日本理化学研究所 Kazuo Shinozaki课题组题为“A small peptide modulates stomatal control via abscisic acid in long-distance signalling”研究论文。

朱健康院士PLOS最新研究成果

  植物激素脱落酸(ABA)调节着植物的生长、发育和对生物/非生物胁迫的响应。核心的ABA信号通路是由三个主要部分组成:ABA受体(PYR1/PYLs)、2C型蛋白磷酸酶(PP2C)和SNF1相关蛋白激酶2(SnRK2)。然而,ABA信号的复杂性,仍然是亟待解决的问题。  最近,国际遗传学期刊《PL

PLL12果胶裂解酶有助于驱动气孔的打开和关闭

  植物通过调整气孔孔径以响应环境线索来控制水分流失和 CO2 吸收。气孔的打开和关闭是由离子和水穿过保卫细胞膜引起保卫细胞的膨胀或收缩引起的。气孔孔径调整在几分钟内发生,气孔一天可以打开或关闭多次。保卫细胞壁如何容忍和帮助这些快速和反复发生的变化?最近证据表明,果胶及其修饰对气孔功能尤其重要,因为

植物气孔的气孔开闭机理

  气孔运动的最终原因是保卫细胞的吸水膨胀或失水皱缩。对气孔运动机理目前有三种学说:  l、淀粉—糖变化说 在光照的前提下,保卫细胞进行光合作用,CO2浓度降低,使之pH值增高至6.l~7.3,这时,淀粉磷酸化酶水解淀粉为葡萄糖,导致保卫细胞水势下降,引起吸水膨胀和气孔开放。在黑暗中,呼吸产生CO2

我国揭示SVP是ABA代谢的关键调控因子可-提高干旱耐受力

  近日,《Molecular Plant》在线发表了植物逆境中心朱健康研究组题为“The Flowering Repressor SVP Confers Drought Resistance in Arabidopsis by Regulating Abscisic Acid Catabolism

辣椒泛素特异性蛋白酶调控ABA信号转导和脱水抗性

  2021年6月18日,The Plant Journal在线发表了韩国中央大学Sung Chul Lee团队题为“Pepper ubiquitin-specific protease, CaUBP12, positively modulates dehydration resistance by

我国揭示PYL介导的ABA信号途径拮抗非ABA途径渗透胁迫应答

  近日,《Cell Reports》杂志在线发表了植物逆境中心朱健康研究组和赵杨研究组题为“Arabidopsis duodecuple mutant of PYL ABA receptors reveals PYL repression of ABA-independent SnRK2 acti

气孔计

  气孔计porometer  由F.Darwin和F.M.Pertz为检测气孔的开闭程度所设计的装置,其基本构造如下:即在T字管横管的一端,通过橡皮管连接一个玻璃钟罩,用羊毛脂、凡士林或明胶等,把玻璃钟罩密封接在叶面上。打开T形管横管的另端的活塞进行抽吸,在T形管垂直部分水被吸上来,至液面达到某一

昆明植物所植物抵御链格孢菌分子机理研究取得新进展

  链格孢菌(Alternaria alternata)是一种营腐生性生活的病原真菌。其多个病理小种可以感染诸多的经济作物,如马铃薯、梨、柑橘、烟草等,每年均造成巨大的国民经济损失。目前对该真菌的防控还没有太好的办法,迫切需要了解其侵入机理,为该真菌导致的病害的防控提供理论和实践上的指导。  

Nature子刊:生理活性优于天然脱落酸的人工类似物

  中国科学院上海生命科学研究院上海植物逆境生物学研究中心朱健康研究组,以“Combining chemical and genetic approaches to increase drought resistance in plants”为题的研究论文,在线发表在Nature Communica

脱落酸的相关知识

脱落酸是植物五大天然生长调节剂之一,生物学种常用作植物组织培养。脱落酸在衰老的叶片组织、成熟的果实、种子及茎、根部等许多部位形成。水分亏缺可以促进脱落酸的形成。 脱落酸的作用: 1.一直与促进生长,外施脱落酸浓度大时抑制茎、下胚轴、根、胚芽鞘或叶片的生长.浓度低时却促进离体黄瓜子叶

研究人员提出脱落酸合成部位的新观点

  脱落酸(abscisic acid,ABA)能够调节植物对不同环境信号以及内源性信号的反应,影响植物的水分胁迫、种子发育、休眠、性别决定等生理适应及生长发育过程。在水分胁迫下,叶片中的ABA会随着水分含量的下调而迅速合成,主动关闭气孔,减少水分散失,使植物免受严重的水分胁迫伤害。与叶片不同,花的

植物气孔概述

  植物气孔是植物形态学上的重要特征,是植物表皮所特有的结构。气孔通常多存在于植物体的地上部分,尤其是在叶表皮上,在幼茎、花瓣上也可见到,但多数沉水植物则没有。气孔是植物与外界进行气体交换的孔道和控制蒸腾的结构。通过它的开闭,调控着植物的气体交换率和水分蒸腾率,对植物的生活起着极为重要的作用。现将与

气孔的类型

  双子叶植物的气孔有四种类型  无规则型  保卫细胞周围无特殊形态分化的副卫细胞;  不等型  保卫细胞周围有三个副卫细胞围绕;  平行型  在保卫细胞的外侧面有几个副卫细胞与其长轴平行;  横列型  一对副卫细胞共同与保卫细胞的长轴成直角.围成气孔间隙的保卫细胞形态上也有差异,大多数植物的保卫细

气孔的分布

  一般在叶下表皮较多,也有的仅在上表皮[睡莲(Nymphaea tetragoma)]和上、下表皮均具有同样分布的[三角叶杨(Popnlus deltoides),宽叶香蒲(Typha latifolia),燕麦(Avena sati-va)]。通常均匀地分散在叶表皮上,其开孔线的方向也是不定的,

气孔的发育

  以裸子植物为中心对气孔的形成过程和亲缘关系十分重视。气孔是从原表皮细胞中发生的,气孔母细胞(stomatal mother cell)横分裂为三,中央细胞再分为二,成为保卫细胞,左右二细胞则成为副卫细胞的形式[复唇型(syndetocheilie type),相反,也有母细胞仅二分为保卫细胞的形

气孔计简介

  由F.Darwin和F.M.Pertz为检测气孔的开闭程度所设计的装置,其基本构造如下:即在T字管横管的一端,通过橡皮管连接一个玻璃钟罩,用羊毛脂、凡士林或明胶等,把玻璃钟罩密封接在叶面上。打开T形管横管的另端的活塞进行抽吸,在T形管垂直部分水被吸上来,至液面达到某一刻度时,把活塞关闭,然后测定

Cell:脱落酸信号

  脱落酸(Abscisic acid)是一种针对非生物胁迫条件产生应答的关键植物激素,同时也是植物不同发育阶段的非生物胁迫抗性机制的激活因子和调控因素。12月14日Cell杂志以“Abscisic Acid Signaling”为题探讨了ABA信号在胁迫应答,以及植物发育调控过程中如何发挥作用的。

关于脱落酸的性质介绍

  脱落酸是一个15碳的倍半萜烯化合物。天然存在的脱落酸是一个对映结构体,特别是右旋化合物(S)-ABA。(R)-ABA的生理活性在多数情况下与(S)-ABA相同。其生理活性取决于以下条件:  ①有自由羧基;  ②环己烷环上在 α-或β-位置有双键;  ③C-2处的双键是顺式。2-反式ABA在光中异

上海生科院发现生理活性优于天然脱落酸的人工类似物

  10月30日,中国科学院上海生命科学研究院上海植物逆境生物学研究中心朱健康研究组,以Combining chemical and genetic approaches to increase drought resistance in plants为题的研究论文,在线发表在Nature Comm

研究揭示AtWRKY53通过介导气孔运动负调控植株抗旱性

  WRKY家族是一个转录调控因子大家族,在拟南芥中拥有74个成员。WRKY家族各成员参与多种生命活动,在植物的生长发育和耐逆抗病过程中都发挥着极其重要的调控作用。AtWRKY53是拟南芥WRKY基因家族第III组成员。目前已有报道指出AtWRKY53在调控植物衰老和生物胁迫方面起着重要作用。干旱是

版纳园研究揭示转录因子WRKY57调控拟南芥干旱耐受能力

  干旱是限制农作物产量和品质的重要环境因子之一,但是植物对干旱耐受性的潜在分子机制却仍不清楚。据报道,WRKY转录因子在植物适应非生物胁迫过程中起着重要的作用。WRKY蛋白质是一个转录调控因子大家族,在拟南芥中有74个成员,大量研究证实,WRKY基因家族各成员参与调控植物的抗逆反应及其信号转导途径