光谱界的“电镜”:拉曼光谱已经实现亚纳米颗粒分析

据物理学家组织网近日报道,日本科学家开发出一种新拉曼光谱法,使研究人员能分析直径仅0.5~2纳米金属颗粒的化学成分和结构。这一最新突破有望使科学家开发出新型微材料,广泛应用于电子、生物医学、化学等领域。金属纳米颗粒拥有广泛的潜在应用前景,正成为现代研究领域的“香饽饽”。研究人员目前已能分析出直径仅为0.5~2纳米(1纳米等于十亿分之一米)的金属纳米晶体。图片来源:物理学家组织网 将通过树枝状聚合物模板法精细制备的氧化锡SNC加载到等离子激元放大器的薄硅壳层上,使SNC的拉曼信号显著增强到可检测的水平。 这些小颗粒被称为“亚纳米簇”(SNC),拥有非常独特的特性。例如,可充当(电)化学反应中出色的催化剂;也会表现出奇特的量子现象,对组成簇的原子数的变化非常敏感等。 但现有分析方法无法胜任SNC的检测研究工作。其中一种方法名为拉曼光谱法,尽管传统拉曼光谱法及其变体已在多个领域“大显身手”,但由于其灵敏度较低,因此对SNC的......阅读全文

光谱界的“电镜”:拉曼光谱已经实现亚纳米颗粒分析

  据物理学家组织网近日报道,日本科学家开发出一种新拉曼光谱法,使研究人员能分析直径仅0.5~2纳米金属颗粒的化学成分和结构。这一最新突破有望使科学家开发出新型微材料,广泛应用于电子、生物医学、化学等领域。金属纳米颗粒拥有广泛的潜在应用前景,正成为现代研究领域的“香饽饽”。研究人员目前已能分析出直径

SERS、TERS-谁能实现拉曼亚纳米分辨?

  纳米尺度上的化学识别对于微观结构的设计与功能调控至关重要,而实现相邻不同分子的化学识别则代表着识别技术的一种极限挑战。最近,中国科学技术大学微尺度物质科学国家实验室单分子科学团队董振超研究组朝着这一极限目标又迈出了重要一步——他们继2013年成功实现亚纳米分辨的单分子拉曼光谱成像之后,又在国际上

“小不点”金属纳米团簇的“变心”

  随着科技的进步,人类认识材料的尺寸不断扩展,从宏观到介观,再到100纳米以下,当尺寸进一步减小(图1),进入“量子尺寸”范围,组成材料的原子或分子会采取什么新的排列方式?会导致一些什么新颖的性能?结构和性能如何关联?如何从原子水平理解“量子尺寸”效应?这些问题催生了一系列前沿研究领域,包括由此应

研究亚纳米尺度Cu3金属团簇抗菌催化材料获得进展

  近日,中国科学院金属研究所沈阳材料科学国家研究中心研究员刘洪阳、博士研究生孟凡池等,与北京大学教授马丁、辽宁大学教授夏立新、香港科技大学教授王宁、中科院上海应用物理研究所研究员姜政、中科院山西煤炭化学研究所研究员温晓东等合作,精准调控亚纳米尺度Cu金属团簇结构,构建出亚纳米尺度下原子级分散且全暴

亚纳米尺度Cu3金属团簇抗菌催化材料研究取得新进展

  最近,金属所沈阳材料科学国家研究中心刘洪阳研究员和博士研究生孟凡池等人与北京大学马丁教授、辽宁大学夏立新教授、香港科技大学王宁教授、中科院上海应用物理所姜政研究员以及中科院山西煤化所温晓东研究员等团队合作,通过对亚纳米尺度Cu金属团簇结构的精准调控,成功构建亚纳米尺度下原子级分散且全暴露Cu3团

双金属纳米簇催化剂“1+1>2”

  金(Au)是公认的惰性金属,但纳米金却具有很高的活性,是非常优异的催化剂。这就是其作为第四代催化剂的独特之处。金钯双金属纳米簇催化剂更可能高效实现氢气、氧气直接合成过氧化氢。在近日由北京化工大学主办的2013年首届中欧双金属纳米簇国际研讨会上,记者领略了双金属纳米簇催化剂的神奇之处。这种具有“1

贵金属纳米结构组装及其表面增强拉曼散射应用研究获进展

  近期,中国科学院合肥物质科学研究院固体物理研究所研究员孟国文课题组和美国西弗吉尼亚大学教授吴年强研究小组合作,在贵金属纳米结构组装及其表面增强拉曼散射(SERS)应用研究方面取得新进展,相关结果以封面论文发表在《纳米研究》(Nano Res. 2015, 8, 957-966)上。  由于电磁增

拉曼光谱仪氧化亚铜纳米线的拉曼光谱研究

介绍     氧化亚铜为一价铜的氧化物,是鲜红色粉末状固体,几乎不溶于水,在酸性溶液中化为二价铜。它是一种重要的P型半导体材料,禁带宽度仅为2.1eV,光电转换效率可达到18%。1998年氧化亚铜被发现可作为催化剂在阳光下将水分解成氢气和氧气,证明是一种极具前景的光催化氧化材料。现今,随着纳

拉曼光谱仪氧化亚铜纳米线的拉曼光谱研究

氧化亚铜为一价铜的氧化物,是鲜红色粉末状固体,几乎不溶于水,在酸性溶液中化为二价铜。它是一种重要的P型半导体材料,禁带宽度仅为2.1eV,光电转换效率可达到18%。1998年氧化亚铜被发现可作为催化剂在阳光下将水分解成氢气和氧气,证明是一种极具前景的光催化氧化材料。现今,随着纳米材料的发展,不仅已经

金属纳米颗粒可清除口腔细菌

  由莫斯科国立科技大学(NUST MISIS)与维亚茨基国立大学专家共同研制的新型牙齿清洁剂,可以从根本上改变口腔的微观环境,并消除在牙齿上形成的菌斑层,其效果已在基洛夫国家医学科学院口腔研究室的临床实践中得到证实。  实验中,志愿者使用这种含有金属纳米颗粒的新型牙齿清洁剂一个月后,口腔中菌群数量

拉曼光谱配件纳米海绵状SERS

完美适用于532,638和785拉曼,针对638nm的拉曼响应度最好; 更长的存放期,相对于纸质基板的1--3个月的保存期,SP 纳米海绵SERS可以在常温下存储6个月或更久适用于高能量激光,而且可以确保SERS的整个稳定性能不变,背景基线也非常低SERS作为拉曼增强的理想附件,是提高拉曼信号的最佳

金属有拉曼或红外特征峰吗

基本没有,红外是根据化学键电子云的偶极矩变化为产生条件的。

为什么拉曼散射不能分析金属样品

拉曼光谱的原理是斯托克斯,简单理解就是入射光照射分子后,分子振动消耗了一部分能量,导致散射光能量小于入射光能量。以此来分析分子键振动的信息并加以转化。而金属之间主要是靠静电吸附的金属键,入射出射光能量相同,所以没法测量的。

金银纳米材料表面生物分子吸附及SERS光谱研究获进展

自上世纪八十年代首次报道DNA基本结构分子——腺嘌呤在金/银等纳米颗粒表面的表面增强拉曼光谱(SERS)以来,学界针对腺嘌呤表面吸附问题开展了大量光谱学实验和理论研究,但其在金银纳米颗粒表面的吸附方式仍然难以确定,而明确分子在表面的吸附构象对进一步理解拉曼光谱增强效应及机制至关重要。近期,中

金银纳米材料表面生物分子吸附及SERS光谱研究获进展

  自上世纪八十年代首次报道DNA基本结构分子——腺嘌呤在金/银等纳米颗粒表面的表面增强拉曼光谱(SERS)以来,学界针对腺嘌呤表面吸附问题开展了大量光谱学实验和理论研究,但其在金银纳米颗粒表面的吸附方式仍然难以确定,而明确分子在表面的吸附构象对进一步理解拉曼光谱增强效应及机制至关重要。  近期,中

拉曼光谱配件纳米海绵状SERS应用

典型应用爆炸物 纳米海绵技术的开发就是为了检测爆炸物和化学武器,与其他技术的SERS相比,这款SERS的性能明显优于其他SERS。食品安全 基于新版SERS对大多数农残的测试 ,最低检出限都能检测到1ppm的测试,另外比如对违法食品添加剂三聚氰胺的检测,在痕量水平都能被检测到。反伪造 通过在燃油中添

纳米结构Si表面增强拉曼散射特性研究

崔绍晖,符庭钊,王欢,夏洋,李超波1. 中国科学院 微电子研究所,北京 100029;2. 中国科学院大学,北京 100049;3. 集成电路测试技术北京市重点实验室,北京 100088  摘要: 为了实现低成本高灵敏度的表面增强拉曼散射效应,制备了一种基于硅表面纳米结构的表面增强拉曼散射效应(SE

拉曼光谱配件纳米海绵状SERS选型

我们该如何选择SERS?对于SERS适用的不同拉曼激发波长是比较复杂的,我们没有简单的原理或者规则可遵循,但是我们可以从实践中获得很多的使用信息。经过实际使用,我们发现纳米海绵SERS最佳的使用激光波长为638nm,而非大家经常使用的532nm或者785nm。我们使用不同的激发波长和测量样品对三种S

亚纳米Fe团簇和单原子协同催化高效合成亚胺新策略

  近年来,非贵金属氮掺杂碳基单原子催化剂(M-N-C)因其原子利用率高、结构可调性强、稳定性好等优势,在能源存储与转化、生物医学、有机催化转化等领域被广泛应用。目前高温热解法仍是最为普遍采用的M-N-C催化剂制备方法,但在高温热解过程中不可避免会导致金属纳米颗粒(NPs)或亚纳米团簇(NCs)的形

新型表面增强拉曼基底可用于检测水中农药残留

  近期,固体所孟国文研究员小组与美国西弗吉尼亚大学吴年强教授小组及技术生物所黄青研究员小组合作,在银纳米棒簇有序阵列构筑及基于其表面增强拉曼散射(SERS)效应检测水中农药残留方面取得进展,相关成果以卷首插画论文发表在《先进材料》(Adv. Mater. 2016, 28, 4871-4876)上

紫外拉曼与共振拉曼原理

荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300nm-700nm区域,或者更长波长区域。而在紫外区

紫外拉曼与共振拉曼原理

荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300nm-700nm区域,或者更长波长区域。而在紫外区的某个波  紫外

紫外拉曼与共振拉曼原理

  荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300nm-700nm区域,或者更长波长区域。而在紫外区的某个波

亚纳米铜团簇与钌单原子协同催化乙炔加氢研究取得进展

乙烯作为重要基础化工原料,其纯度直接影响乙烯下游高附加值化学品的生产。由石油裂解制备的乙烯中,通常含有0.5 ~ 2 vol.%的乙炔杂质,乙炔会毒化后续乙烯聚合反应的催化剂。因此,乙炔杂质脱除是乙烯聚合工业中的关键环节。利用乙炔催化加氢将乙炔转化为乙烯,是去除乙炔杂质的重要手段。目前,工业上使用的

关于拉曼光谱的拉曼效应介绍

  光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应。  当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直

拉曼光谱仪是否可分析纯金属

拉曼光谱仪是否可分析纯金属?1,分析气体时理论上最高只需0.5cm-1。实际应用上绝大部分情况下4cm-1已足够。对于气体,还是希望分辨率高一些好,一般都用1cm-1一下,这样对气体的一些微小峰的变化检测更好2,基本上不可能。金属不太可能作出来,因为一般不发生分子极化率改变。

新加坡开发出商用高性能表面增强拉曼光谱传感器

  据最新报道,新加坡研究人员利用黄金纳米阵列开发出适于商业应用的高性能表面增强拉曼光谱传感器。表面增强拉曼光谱技术(SERS)是在印度科学家拉曼1928年发现拉曼散射现象的基础上发展起来的。利用拉曼光谱技术可以非常方便地鉴定物质成分,现已成为探测界面特性和分子间相互作用、表征表面分子吸附行为和分子

中科院大化所等金属纳米团簇研究获新进展

近日,中科院大连化物所杨学明、马志博团队与厦门大学郑南峰团队及芬兰于韦斯屈莱大学Hannu Hakkinen团队合作,通过低温超高真空扫描隧道显微镜(STM)研究原子结构精确已知的Ag374纳米团簇的表面配体,获得亚分子水平超高分辨,结合DFT理论计算与模板识别算法,实现对表面配体形貌和结构以及团簇

固体所金属纳米团簇荧光与结构关联方面获重要进展

  近期,固体所伍志鲲研究员课题组与复旦大学、大连理工大学、智能所、中国科大等单位合作,在金属纳米团簇的结构与荧光性能关联方面取得重要进展,相关工作已在《德国应用化学》上发表 (Angew. Chem. Int. Ed. 2016, 55, 11567 -11571)。论文的第一作者是博士后甘自保。

拉曼分析

当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅是改变了方向,发生散射,而光的频率仍与激发光源一致,这中散射称为瑞利散射。但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。其散射光的强度约占总散射光强度的10-6~10-10。拉曼散射的产生原