原子力显微镜针尖与样品间的材料转移
为了研究湿度对OTE/云母样品到针尖材料转移的影响,在90%的相对湿度条件下,在OTE/云母表面对针尖进行修饰,然后在5%的湿度下比较修饰前后针尖在云母表面的摩擦力信号大小。在90%的相对湿度条件下,针尖在OTE/云母样品表面的修饰效应如图2所示。修饰后针尖在云母表面摩擦力信号大约是清洁针尖在云母表面F的40%,此值略大于5%湿度下修饰后F的衰减值(30%),表明针尖在90%湿度条件下,在OTE膜上的修饰比5%的湿度条件下弱。氮化硅针尖在摩擦中的修饰过程是在接触区里的一个复杂的摩擦化学过程。当氮化硅针尖在OTE表面进行摩擦扫描时,针尖表面的氮化硅被氧化(通过氮氧中间物)生成亲水的硅酸[8]。当氮化硅针尖在OTE/云母表面扫描时,一些OTE分子可能会从OTE/云母表面转移到氮化硅针尖表面形成牢固的OTE单分子层。然而,这种修饰过程不是一个渐进的过程,它在前几次摩擦扫描中反应剧烈,而在其后的几十次摩擦扫描中趋于一个平衡态,如图1a结......阅读全文
原子力显微镜针尖与样品间的材料转移
为了研究湿度对OTE/云母样品到针尖材料转移的影响,在90%的相对湿度条件下,在OTE/云母表面对针尖进行修饰,然后在5%的湿度下比较修饰前后针尖在云母表面的摩擦力信号大小。在90%的相对湿度条件下,针尖在OTE/云母样品表面的修饰效应如图2所示。修饰后针尖在云母表面摩擦力信号大约是清洁针尖在云母表
原子力显微镜的针尖对薄膜样品表面是否有损伤
原子力显微镜的应用范围十分广泛,其适用于生物、高分子、陶瓷、金属材料、矿物、皮革等固体材料等的显微结构和纳米结构的观测,以及粉末、微球颗粒形状、尺寸及粒径分布的观测等。XRD、SEM和AFM测试没有固定的先后顺序。1 XRD(X-ray diffraction)是用来获得材料的成分、材料内部原子或分
原子力显微镜的针尖对薄膜样品表面是否有损伤
XRD、SEM和AFM测试没有固定的先后顺序。1 XRD(X-ray diffraction)是用来获得材料的成分、材料内部原子或分子的结构。2 SEM(扫描电子显微镜)是一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。3 AFM (原子力显微镜)是一种表面观测仪器,与扫描隧道显
原子力显微镜针尖下的世界
还是以我们之前提到的测量水下礁石为例,如果某次测量的时候用力不合适,竹竿末端接触礁石表面的时候折断了一小节,而我们又没有及时发现这个问题,那么接下来的测量结果就会变得不准确。正因为如此,原子力显微镜的使用者往往需要足够的经验和耐心来判断得到的结果是否合理。不过瑕不掩瑜,原子力显微镜仍然是一种非常便捷
针尖下的世界——漫谈原子力显微镜
眼睛是人类认识世界的重要工具,然而对于小到只有几个或者几十个微米(1微米是1米的百万分之一)的物体,像构成我们身体的细胞、导致我们生病的细 菌等,人眼就无法分辨了,需要求助于光学显微镜。光学显微镜的问世使得我们能够观察到微米尺度的各种物体,这给我们的生活带来了许多革命性的变化,例如细菌的发现颠覆了我
原子力显微镜探针针尖形貌盲重构
随着微电子学、材料学、精密机械学、生命科学和生物学等的研究深入到原子尺度,纳米加工工艺要求逐步提高,纳米尺度精密测量和量值传递标准需求越来越大。为此,迫切需要具有计量功能的纳米、亚纳米精度测量系统(包括测量仪器和标定样品等)。原子力显微镜(AFM)是目前最重要、应用最广泛的纳米测量仪器之一,是真正意
针尖下的世界——漫谈原子力显微镜
眼睛是人类认识世界的重要工具,然而对于小到只有几个或者几十个微米(1微米是1米的百万分之一)的物体,像构成我们身体的细胞、导致我们生病的细菌等,人眼就无法分辨了,需要求助于光学显微镜。光学显微镜的问世使得我们能够观察到微米尺度的各种物体,这给我们的生活带来了许多革命性的变化,例如细菌的发现颠覆了
原子力显微镜的样品要求
原子力显微镜研究对象可以是有机固体、聚合物以及生物大分子等,样品的载体选择范围很大,包括云母片、玻璃片、石墨、抛光硅片、二氧化硅和某些生物膜等,其中zui常用的是新剥离的云母片,主要原因是其非常平整且容易处理。而抛光硅片要用浓硫酸与30%双氧水的7∶3 混合液在90 ℃下煮1h。利用电性能测试时需
原子力显微镜实验样品处理
原子力显微镜实验针尖与样品之间的作用力分析论文导读::采用上海纳米爱建公司生产的 AJ-型原子力显微镜。利用接触模式进行探针力-距离曲线的测量。
原子力显微镜的样品要求
原子力显微镜研究对象可以是有机固体、聚合物以及生物大分子等,样品的载体选择范围很大,包括云母片、玻璃片、石墨、抛光硅片、二氧化硅和某些生物膜等,其中zui常用的是新剥离的云母片,主要原因是其非常平整且容易处理。而抛光硅片zui好要用浓硫酸与30%双氧水的7∶3 混合液在90 ℃下煮1h。利用电性能测
原子力显微镜的样品制备
粉末样品的制备:粉末样品的制备常用的是胶纸法,先把两面胶纸粘贴在样品座上,然后把粉末撒到胶纸上,吹去为粘贴在胶纸上的多余粉末即可。块状样品的制备:玻璃、陶瓷及晶体等固体样品需要抛光,注意固体样品表面的粗糙度。液体样品的制备:液体样品的浓度不能太高,否则粒子团聚会损伤针尖。(纳米颗粒:纳米粉末分散到溶
原子力显微镜对样品的要求
原子力显微镜研究对象可以是有机固体、聚合物以及生物大分子等,样品的载体选择范围很大,包括云母片、玻璃片、石墨、抛光硅片、二氧化硅和某些生物膜等,其中最常用的是新剥离的云母片,主要原因是其非常平整且容易处理。而抛光硅片最好要用浓硫酸与30%双氧水的7∶3 混合液在90 ℃下煮1h。利用电性能测试时需要
原子力显微镜对样品的要求
原子力显微镜(Atomic Force Microscope ,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖
关于原子力显微镜测定对样品的要求介绍
原子力显微镜研究对象可以是有机固体、聚合物以及生物大分子等,样品的载体选择范围很大,包括云母片、玻璃片、石墨、抛光硅片、二氧化硅和某些生物膜等,其中最常用的是新剥离的云母片,主要原因是其非常平整且容易处理。而抛光硅片最好要用浓硫酸与30%双氧水的7∶3 混合液在90 ℃下煮1h。利用电性能测试时
原子力显微镜为什么是“原子力”
原子力显微镜也是运用了类似的原理。如果我们用一根探针来靠近某个物体的表面,当针尖与表面距离非常小时(一般在几个纳米左右),二者之间会存在一个微弱的相互作用。从图2我们可以看到,针尖与物体表面之间的作用力大小和它们之间的距离直接相关,距离非常近时(一般小于零点几纳米)二者之间的力是相互排斥的,如果它们
原子力显微镜
原子力显微镜(atomic force microscope,简称AFM)是一种纳米级高分辨的扫描探针显微镜。原子力显微镜通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互
原子力显微镜
原子力显微镜(Atomic Force Microscope,AFM)是在1986年由扫描隧道显微镜(Scanning Tunneling Mi-croscope,STM)的发明者之一的Gerd Binnig博士在美国斯坦福大学与Quate C F和Gerber C等人研制成功的一种新型的显微镜[1
针尖穿刺力的测试方法
《GB 15811—2001 一次性使用无菌注射针》标准“注射针刺穿力”测试原理的解释是:用一穿刺力试验装置使注射针以规定的速度,垂直通过模拟皮肤时所测得的最大峰值力来评估注射针的穿刺力。注射器注射针针尖的穿刺力大小是否合适,直接影响到其使用适应性能,是各生产企业关注的重点指标之一。针尖穿刺力的检测
针尖穿刺力的测试方法
《GB 15811—2001 一次性使用无菌注射针》标准“注射针刺穿力”测试原理的解释是:用一穿刺力试验装置使注射针以规定的速度,垂直通过模拟皮肤时所测得的蕞大峰值力来评估注射针的穿刺力。注射器注射针针尖的穿刺力大小是否合适,直接影响到其使用适应性能,是各生产企业关注的重点指标之一。针尖穿刺力的检测
原子力显微镜的力谱
原子力显微镜的另一个主要应用(除了成像)是力谱,它直接测量作为尖端和样品之间间隙函数的尖端-样品相互作用力(测量的结果称为力-距离曲线)。对于这种方法,当悬臂的偏转被监测为压电位移的函数时,原子力显微镜的尖端向表面伸出或从表面缩回。这些测量已被用于测量纳米接触、原子键合、范德华力和卡西米尔力、液
新款Jupiter-XR-大样品原子力显微镜的技术特点
牛津仪器宣布推出新款Jupiter XR大样品原子力显微镜 (AFM), 这是Asylum Research一款功能全面、适合大样品的原子力显微镜。通过它,用户可以实现在一台扫描仪上进行高速成像和大范围扫描。Jupiter 原子力显微镜可用于200mm样品的全面扫描,提供更高的分辨率、更快的测量
原子力显微镜的应用范围和检测样品的要求
应用范围: 固体材料表面微观形貌、大小、厚度和粗糙度的表征 送样要求: 1、样品大小最大1×1cm,厚度最厚0.5cm; 2、样品上下表面整洁,没有油渍灰尘等污染物; 3、仪器最大扫描范围10×10×2.5μm; 4、若是纳米颗粒样品,先用分散剂超声分散后,滴在云母、硅片等平整的基底
原子力显微镜(AFM)的工作模式及对样品要求
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 19.0px; font: 13.0px 'Helvetica Neue'}工作模式原子力显微镜的工作模式是以针尖与样品之间的作用力的形式来分类的。主要有以下3种操作模式:接触模式(contact
原子力显微镜概述
原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品的表面状态信息。与常规显微镜比
原子力显微镜简介
原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品的表面状态信息。与常规显微镜比
原子力显微镜概述
原子力显微镜(AFM)概述最早扫描式显微技术(STM)使我们能观察表面原子级影像,但是STM 的样品基本上要求为导体,同时表面必须非常平整, 而使STM 使用受到很大的限制。而目前的各种扫描式探针显微技术中,以原子力显微镜(AFM)应用是最为广泛,AFM 是以针尖与样品之间的属于原子级力场作用力,所
原子力显微镜简介
原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品的表面状态信息。与常规显微镜比
原子力显微镜特点
原子力显微镜(Atomic Force Microscope,简称AFM)利用微悬臂感受和放大悬臂上尖细探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率。由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不足。原子力显微镜是由IBM公司苏黎世研究中心的
原子力显微镜原理
原子力显微镜是显微镜中的一种类型,应用范围十分广泛。原子力显微镜是一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器,很多人对原子力显微镜原理不太了解,下面小编就为大家介绍一下原子力显微镜原理、工作模式及应用领域。 原子力显微镜原理 将一个对微弱力极敏感的微悬臂一端固
相原子力显微镜
液相原子力显微镜(liquid cell Force Microscope )对生物分子研究而言,对DNA 基本结构及功能的了解一直是科学家追求目标,早在1953 年 DNA 双螺旋结构的发现后,使人了解遗传讯息如何在这当中传送,并且也将生物研究推展到分子生物的领域,为了解个别分子的功能,许多解析分