膜分离技术中聚砜膜的特点
制造膜的高分子材料很多,膜材料常用离心机进行分离提纯。聚砜是用的最广的制膜材料之一。一、聚砜膜的优点:1、稳定性好,憎水性强。2、使用温度可高达75℃。3、使用PH值1~13。4、耐氯性能好,一般在短期清洗时对氯的耐受量可高达200mg/L,长期贮存时耐受量达50mg/L。5、孔径范围宽,截留分子量从1000至500000,符合超滤膜的要求,但不能用于制造反渗透膜。二、聚砜膜的主要缺点:聚砜膜允许的操作压力较低,对于平板膜极限操作压力为0.7MPa,对中空纤维膜为0.17MPa。......阅读全文
膜分离技术中聚砜膜的特点
制造膜的高分子材料很多,膜材料常用离心机进行分离提纯。聚砜是用的zui广的制膜材料之一。一、聚砜膜的优点: 1、稳定性好,憎水性强。 2、使用温度可高达75℃。 3、使用PH值1~13。 4、耐氯性能好,一般在短期清洗时对氯的耐受量可高达200mg/L,长期贮存时耐受量达50
膜分离技术中聚砜膜的特点
制造膜的高分子材料很多,膜材料常用离心机进行分离提纯。聚砜是用的最广的制膜材料之一。一、聚砜膜的优点:1、稳定性好,憎水性强。2、使用温度可高达75℃。3、使用PH值1~13。4、耐氯性能好,一般在短期清洗时对氯的耐受量可高达200mg/L,长期贮存时耐受量达50mg/L。5、孔径范围宽,截留分子量
膜分离技术中的膜组件
由膜、固定膜的支撑体、间隔物以及容纳这些部件的容器构成的单元称为膜组件。膜组件有板框式、管式、螺旋卷式和中空纤维式等。膜材料常用离心机进行分离提纯。 膜组件应具备下述要求: 1、原料侧与透过侧的流体有良好的流动状态,以减少返混、浓差极化和膜污染。 2、具有尽可能高的装填
膜分离技术中的膜组件
由膜、固定膜的支撑体、间隔物以及容纳这些部件的容器构成的单元称为膜组件。膜组件有板框式、管式、螺旋卷式和中空纤维式等。膜材料常用离心机进行分离提纯。膜组件应具备下述要求:1、原料侧与透过侧的流体有良好的流动状态,以减少返混、浓差极化和膜污染。2、具有尽可能高的装填密度。3、对膜能够提供高的机械支撑,
膜分离技术中醋酸纤维素膜的特点
制造膜的高分子材料很多,膜材料常用离心机进行分离提纯。醋酸纤维素是用的zui广的制膜材料之一。 醋酸纤维素系将纤维素的葡萄糖分子中的羟基进行乙酰化而制得,乙酰化程度越高就越稳定,因而常以三醋酸纤维素制造膜。醋酸纤维素有一定的亲水性,透过速度大,制成的膜截留能力强,适宜于制造反渗透
膜分离技术中醋酸纤维素膜的特点
制造膜的高分子材料很多,膜材料常用离心机进行分离提纯。醋酸纤维素是用的zui广的制膜材料之一。醋酸纤维素系将纤维素的葡萄糖分子中的羟基进行乙酰化而制得,乙酰化程度越高就越稳定,因而常以三醋酸纤维素制造膜。醋酸纤维素有一定的亲水性,透过速度大,制成的膜截留能力强,适宜于制造反渗透膜、超滤膜和微滤膜,原
膜分离技术中膜的制备方法
膜分离技术中膜的制备方法包括高分子膜、无机膜和复合膜的制备方法,膜材料常用离心机进行分离提纯。一、高分子膜的制备方法: 用物理化学方法可制备分离性能良好的高分子膜。zui实用的方法是相转化法。 相转化法是用溶剂、溶胀剂与高分子膜材料制成铸膜液,刮制成膜后,通过
膜分离技术中膜的制备方法
膜分离技术中膜的制备方法包括高分子膜、无机膜和复合膜的制备方法,膜材料常用离心机进行分离提纯。一、高分子膜的制备方法:用物理化学方法可制备分离性能良好的高分子膜。最实用的方法是相转化法。相转化法是用溶剂、溶胀剂与高分子膜材料制成铸膜液,刮制成膜后,通过沉浸凝胶法、热凝胶法、溶剂蒸发法和水蒸气吸入法等
膜分离技术的技术特点
膜是具有选择性分离功能的材料,利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜
膜分离技术的重中之重:洽谈膜材料
在化工单元操作中,常见的分离方法有筛分、过滤、蒸馏、蒸发、重结晶、萃取、离心分离等。 然而,对于高层次的分离,如分子尺寸的分离、生物体组分的分离等,采用常规的分离方法是难以实现的,或达不到精度,或需要损耗极大的能源而无实用价值。 然而,随着膜分离技术的出现,该类问题得到解决。膜分离过程的主要
膜分离技术的技术特点简介
膜分离技术的特点膜分离过程是一个高效、环保的分离过程,是多学科交叉的高新技术,在物理、化学和生物性质上呈现出各种各样的特性,具有较多的优势。膜是具有选择性分离功能的材料,利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。它与传统过滤的不同在于,膜可以在分子范围内进行分离,并
液相色谱仪液体样品预处理技术膜分离的原理及特点
膜分离技术是1960年前后开发、20世纪70年代开始实用化的。随着其用途不断扩大,近年来已迅速发展成为大型化的分离装置,广泛用于海水淡化、洁净水、纯水和超纯水制造、废水处理等众多领域。膜分离是利用固膜或液膜的选择性渗透作用而分离气体或液体混合物的一种方法。固膜分离有超滤、微孔过滤、反渗透、气体渗透分
膜分离技术的发展历程及原理
人们对膜进行科学研究则是近几十年来的事。1950年朱达W.Juda试制出选择透过性能的离子交换膜,奠定了电渗析的实用化基础。1960年洛布(Loeb)和索里拉简(Sourirajan)研制成世界上具有历史意义的非对称反渗透膜,这在膜分离技术发展中是一个重要的突破,使膜分离技术进入了大规模工业
膜分离技术中表征膜性能的参数
1、水通量:指单位时间通过单位面积膜的水的体积或质量。2、截留率:指膜对溶质的截留能力。(1)截留率是1时,表示溶质全部被截留。截留率是0时,表示溶质能自由透过膜。(2)截留率与分子量之间的关系称为截断曲线。质量好的膜应有陡直的截断曲线,可使不同分子量的溶质完全分离;斜坦的截断曲线会导致分离不完全。
膜分离法的用途相关介绍
膜分离法的主要特点是无相变,能耗低,装置规模根据处理量的要求可大可小,而且设备简单,操作方便安全,启动快,运行可靠性高,不污染环境,投资少,用途广等优点。各种气体分离方法的规模,经济性,技术成熟程度,能耗和用途如下: 高分子分离膜是用高分子材料制成的具有选择性透过功能的半透性薄层物材料。主要有
膜分离法的主要特点
膜分离法的主要特点是无相变,能耗低,装置规模根据处理量的要求可大可小,而且设备简单,操作方便安全,启动快,运行可靠性高,不污染环境,投资少,用途广等优点。*在常温和低压下进行分离与浓缩,因而能耗低,从而使设备的运行费用低。*设备体积小、结构简单,故投资费用低。*膜分离过程只是简单的加压输送液体,工艺
膜分离过程中的膜污染与清洗
膜分离过程中的膜污染会造成膜透过通量大幅度降低,影响产物的回收率,进行膜清洗很重要。一、造成膜污染的原因: 1、凝胶极化引起的凝胶层。 2、溶质在膜表面的吸附层。 3、膜孔堵塞。 4、膜孔内溶质吸附。二、膜清洗: 1、试剂:水、盐溶液、稀酸、稀碱、表面活性剂、络合剂、氧化剂和酶溶
膜分离过程中的膜污染与清洗
膜分离过程中的膜污染会造成膜透过通量大幅度降低,影响产物的回收率,进行膜清洗很重要。一、造成膜污染的原因: 1、凝胶极化引起的凝胶层。 2、溶质在膜表面的吸附层。 3、膜孔堵塞。 4、膜孔内溶质吸附。二、膜清洗: 1、试剂:水、盐溶液、稀酸、稀碱、表面活性剂、络合剂、氧化剂和酶溶液等。
膜分离技术中表征膜性能的参数详解
膜分离技术中表征膜性能的参数:1、水通量:指单位时间通过单位面积膜的水的体积或质量。2、截留率:指膜对溶质的截留能力。(1)截留率是1时,表示溶质全部被截留。截留率是0时,表示溶质能自由透过膜。(2)截留率与分子量之间的关系称为截断曲线。质量好的膜应有陡直的截断曲线,可使不同分子量的溶质完全分离;斜
液相色谱仪膜分离技术膜的分类
可按下面几个方面对膜进行分类:①根据膜的材质,从相态上可分为固体膜和液体膜;②从材料来源上可分为天然膜和合成膜,合成膜又分为无机材料膜和有机材料膜;③根据膜的结构可分为多孔膜和致密膜;④按膜断面的物理形态,固体膜又可分为对称膜、不对称膜和复合模;对称膜又称均质膜,不对称膜具有极薄的表面活性层(或致密
关于膜分离技术的详细介绍
超过滤是一种薄膜分离技术。就是在一定的压力下(压力为0.07~0.7MPa,最高不超过1.05MPa),水在膜面上流动,水与溶解盐类和其他电解质是微小的颗粒,能够渗透超滤膜,而相对分子质量大的颗粒和胶体物质就被超滤膜所阻挡,从而使水中的部分微粒得到分离的技术。 超滤膜的孔径是数十至几百埃、介于
液相色谱仪膜分离技术膜材料的分类
膜材料分类材料类别膜材料举例有机材料纤维素衍生物类醋酸纤维素、硝酸纤维素、乙基纤维素等聚砜类聚砜、聚醚砜、聚芳醚砜、磺化聚砜等聚酰(亚)胺类聚砜酰胺、芳香族聚酰胺、含氟聚酰亚胺等聚酯、烯烃类涤纶、聚碳酸酯、聚乙烯、聚丙烯腈等含氟(硅)类聚四氟乙烯、聚偏氟乙烯、聚二甲基硅氧烷等其他壳聚糖、聚碳酸核径
膜分离过程中的超滤技术
一、超滤技术简介: 1、推动力:压力差。 2、透过物质:溶剂、离子和小分子,透过范围在1nm~0.1μm。 3、被截留物质:蛋白质、各类酶、细菌、病毒、胶体和微粒子。二、超滤膜: 超滤技术的核心部件是超滤膜,膜上微孔的尺寸和形状决定膜的分离效率。超滤膜均为不对称膜,有平板式、
膜分离过程中的超滤技术
一、超滤技术简介: 1、推动力:压力差。2、透过物质:溶剂、离子和小分子,透过范围在1nm~0.1μm。3、被截留物质:蛋白质、各类酶、细菌、病毒、胶体和微粒子。二、超滤膜:超滤技术的核心部件是超滤膜,膜上微孔的尺寸和形状决定膜的分离效率。超滤膜均为不对称膜,有平板式、管式、螺旋卷式和中空纤维式等。
液相色谱仪—膜分离技术常用膜分离过程的基本特点
常用膜分离过程的基本特点分离过程类型分离过程透过组分截流组分推动力传递机理膜类型样品和透过物的状态微滤(MF)溶液脱粒子,气体脱粒子溶液、气体0.02~10μm压力差(约100kPa)筛分多孔膜液体或气体超滤(UF)溶液脱大分子,大分子溶液脱小分子,大分子分级小分子溶液1~20nm溶质压力差(100
膜分离技术在生产果蔬汁及饮料方面的应用
膜分离技术在此方面的应用主要用于果蔬汁的浓缩、果蔬汁和饮料的澄清过滤和无菌化。果汁和蔬菜汁的澄清浓缩可采用反渗透和超滤膜分离新技术;生产汽水用水可采用电渗析技术; 用板式超滤器, 聚砜和聚芳砜膜在饮料生产工艺中, 分离去除悬浮颗粒、残存酵母菌杂菌微生物、胶体和色素等杂质, 可在不加防腐剂下延长贮
超滤滤芯的种类
种类聚丙烯(PP)中空纤维膜聚丙烯中空纤维膜是国际上新一代膜分离材料,具有强度高、耐强酸强碱、耐细菌腐蚀、耐温性能好、表面非极性、抗污染能力强、微孔均匀、单位表面积通量大等优点。1、主要膜性能参数膜外径:420~480μm膜壁厚:40~50μm微孔孔径:0.1~0.2μm透气率:>8.0×10-2(
膜分离过程中的反渗透技术
一、反渗透技术简介: 反渗透技术是一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。即对膜一侧的料液施加压力,当压力超过其渗透压时,溶剂会逆着自然渗透的方向作反向渗透,从而在膜的低压侧得到透过的溶剂,高压侧得到浓缩的溶液。 推动力:压力差。 透过物质:水
膜分离过程中的微滤技术
一、微滤技术简介: 1、推动力:压力差。 2、透过物质:水、溶剂和溶解物,透过范围在0.1~10μm。 3、被截留物质:悬浮物、细菌类、微粒子和大分子有机物。二、微滤技术优点: 1、孔径均匀,过滤精度高,可将液体中大于孔径的微粒全部截留。 2、孔隙大,流速快。一般微孔膜的孔密度为107孔/
膜分离过程中的反渗透技术
一、反渗透技术简介:反渗透技术是一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。即对膜一侧的料液施加压力,当压力超过其渗透压时,溶剂会逆着自然渗透的方向作反向渗透,从而在膜的低压侧得到透过的溶剂,高压侧得到浓缩的溶液。推动力:压力差。透过物质:水和溶剂,透过粒径小于0.5nm。被截留物质:无机