我国学者揭示蓝藻光系统I捕获光能和电子传递结构基础
2月10日,国际学术期刊《自然-植物》(Nature Plants)在线发表了题为Structural basis for energy and electron transfer of the photosystem I–IsiA–flavodoxin supercomplex 的研究论文,该项工作是由中国科学院生物物理研究所李梅/常文瑞课题组与章新政课题组合作完成的。左图:从胞质侧观察PSI-IsiA超复合物的整体结构(为清楚起见去掉了胞质侧的外周亚基),虚线分开PSI三体的每个单体。右图:从膜平面方向观察PSI-IsiA-Fld超复合物的整体结构,只展示了一个PSI核心及6个IsiA蛋白,PSI核心外周亚基及Fld蛋白在图中标出。 光合蓝藻(Cyanobacteria)是海洋区域主要的有机物初级生产者,并具有光合效率高、生长速度快和易于进行基因改造等优点,是一种理想的基因工程宿主菌,也是光合作用研究的模式生物。蓝藻所......阅读全文
我国学者揭示蓝藻光系统I捕获光能和电子传递结构基础
2月10日,国际学术期刊《自然-植物》(Nature Plants)在线发表了题为Structural basis for energy and electron transfer of the photosystem I–IsiA–flavodoxin supercomplex 的研究论文,该
研究揭示叶绿素d型蓝藻光系统利用远红光的结构基础
放氧光合作用是大规模利用太阳能把二氧化碳和水合成有机物并放出氧气的过程,几乎是一切生命生存和发展的基础。放氧光合作用光能向化学能转化的原初反应,通常由位于植物、藻类及蓝藻等光合生物类囊体膜上的光系统在可见光的驱动下完成。Acaryochloris marina(A. marina)是以叶绿素d(Ch
研究发现蓝藻四聚体光系统I的生理和进化意义
近日,美国田纳西大学等科研机构的研究人员在Nature Plants上发表了题为“Physiological and evolutionary implications of tetrameric photosystem I in cyanobacteria”的文章,对蓝藻四聚体光系统Ⅰ的生理和
新疆生地所完成铬胁迫下两个光系统活性的同步测量分析
铬是一种对水生生态系统有严重危害的有毒重金属元素。由于同步测量仪器的欠缺,此前关于重金属对光合生物影响的研究主要针对于光系统II进行,缺乏关于重金属,如六价铬Cr(V),对光系统I和II(PSI和PSII)影响的同步分析。 针对上述问题,中国科学院新疆生态与地理研究所潘响亮研究员团队使用D
蓝藻光合作用环式电子传递的结构基础研究获进展
1月30日,《自然-通讯》(Nature Communications)期刊以Article形式发表了中国科学院生物物理研究所常文瑞/李梅研究组、章新政研究组及中科院分子植物科学卓越创新中心/植物生理生态研究所米华玲研究组的合作研究成果,题为Structural basis for electr
蓝藻光合作用环式电子传递的结构基础研究获进展
1月30日,《自然-通讯》(Nature Communications)期刊以Article形式发表了中国科学院生物物理研究所常文瑞/李梅研究组、章新政研究组及中科院分子植物科学卓越创新中心/植物生理生态研究所米华玲研究组的合作研究成果,题为Structural basis for electr
最新研究揭示蓝细菌受光/暗调控的蛋白质降解
光对于光合生物(包括高等植物和蓝细菌)是必需的,并参与调控蛋白质的合成与降解。光调控的蛋白质降解是光合生物中蛋白质质量控制的重要机制,其中最典型、研究最深入的是光系统II反应中心D1蛋白,其光诱导的降解和修复是光合作用能持续进行的保证。此外,是否存在大量未被发现的受光调控的蛋白质降解及修复尚不清
版纳植物园热带树木低温生理研究取得新进展
许多热带植物具有极高的经济价值,近几年来被大量地引种到我国的热带和亚热带地区。但是,热带植物对零上低温很敏感,短时间的零上低温就有可能导致叶片光合作用机构受损,所以,研究热带植物对低温的敏感性对热带作物的引种栽培具有重要的理论和实践指导意义。 中科院西双版纳热带植物园的研究人员前期研究结
电子传递的定义
电子传递,electron transfer,electron transport是指生物体氧化还原反应中的电子移动。
电子传递的类型
在氧化还原反应中,有氧的传递、氢的传递和电子的传递,在生物体的氧化还原反应中也有同样的类型。加氧酶(oxygenase)的场合即是氧的传递,但氢的传递则认为是电子和氢离子的转移,与电子传递并无本质上的差别。
电子传递的原理
对以吡啶核苷酸作为辅酶的脱氢酶来说,从底物中移动的氢原子也仅只有一个,其他是作为电子+H+,向吡啶辅酶传递。在呼吸作用中分子态氧,是通过细胞色素系统接受电子传递,与氢结合生成水。细胞色素间的氧化还原随着铁红血素的二价、三价的变化而进行电子传递。通常底物的氧化,是根据从底物到氧的多价酸电子传递来进行的
激光晶体的聚光系统及滤光系统说明
激光晶体的核心,是由激活粒子(都为金属)和基质两部分组成,激活粒子的能级结构决定了激光的光谱特性和荧光寿命等激光特性,基质主要决定了工作物质的理化性质。根据激活粒子的能级结构形式,可分为三能级系统(如红宝石激光器)与四能级系统(如Er:YAG激光器)。工作物质的形状目前常用的主要有圆柱形、平板
概述类囊体的主要功能
1、水的光解 光合作用的第一步是光驱动的水的分解,并以此建立光合电子传递链所需的电子以及质子梯度。由光系统俘获的的光所驱动的水分解反应发生在类囊体膜的内侧。在该反应中顺便产生的氧气被释放到大气中。 2、光合电子传递链 光合电子传递链依赖于类囊体膜上的光系统。 环式电子传递链仅由光系统 Ⅰ
蓝细菌的形态特征
蓝藻不具叶绿体、线粒体、高尔基体、中心体、内质网和液泡等细胞器,细胞器是核糖体。含叶绿素a,无叶绿素b,含数种叶黄素和胡萝卜素,还含有藻胆素(是藻红素、藻蓝素和别藻蓝素的总称)。其光合作用系统中具有叶绿素a和光系统Ⅱ,以水为电子供体,放出O2,而其他光合细菌的电子供体一般为H2、H2S和S,不产生氧
光系统Ⅰ的组成
与PSⅡ相似,PSⅠ是由LHCⅠ和PSⅠ-RC组成,但是没有与放氧有关的锰簇合物和外周蛋白。PSⅠ-RC中的Chl-a也组成特殊的分子对,在原初光化学反应中起到原初电子供体作用的是P700 。最新的分辨率为3.4A的X射线晶体结构解析表明,PSⅠ是一个不对称的结构单元,晶胞参数为:a 5214.27
酶标仪滤光系统
酶标仪最简单的是用滤光方式来划分。一般来说,可以分为滤光片型和光栅型两大类。也有一些酶标仪里面同时装上了滤光片和光栅。但是滤片和光栅并不能同时完成同一个检测,本质上还只是把滤片和光栅放在了一起,并没有使两者糅合而产生新的技术突破。 光栅型滤光系统具有使用方便,可以进行光谱扫描,灵活性等优点。当
什么是光系统?
光合作用的光化学反应是由两个包括光合色素在内的光系统完成的,即光系统Ⅰ(简称PSⅠ)和光系统Ⅱ(简称PSⅡ)。每个光系统均具有特殊的色素复合体等物质。
SpectraPen/PolyPen手持式光谱仪应用案例:光合机理研究
捷克科学院、捷克南波西米亚大学与英国帝国理工学院利用多种蓝藻Synechocystis sp PCC 6803突变体进行研究,发现在光系统II装配初期,D1和D2蛋白的有效组合需要一种光合作用特殊红素氧还蛋白RubA。这一研究成果发表于2019年《The Plant Cell》。研究者使用荧光灯对样
光合作用“绿巨人”蓄势待发
光合作用是地球生物安全高效地获取太阳能量的主要途径。在植物中,运行光合作用的场所——光合膜有着复杂而精细的结构。 北京时间12月9日,《自然》以长文形式在线发表了中科院植物研究所(以下简称植物所)匡廷云院士团队与浙江大学张兴团队联合完成的突破性研究成果。 55个蛋白亚基的叶绿体超分子复合体的
光合作用“绿巨人”蓄势待发
光合作用是地球生物安全高效地获取太阳能量的主要途径。在植物中,运行光合作用的场所——光合膜有着复杂而精细的结构。 北京时间12月9日,《自然》以长文形式在线发表了中科院植物研究所(以下简称植物所)匡廷云院士团队与浙江大学张兴团队联合完成的突破性研究成果。 他们首次解析了大麦中一个包含55个
光合作用的电子传递链基本内容
所有能进行放氧光合作用生物都具有PSⅠ和PSⅡ两个光系统。光系统Ⅰ(PSⅠ)能被波长700 nm的光激发,又称P700;光系统Ⅱ(PSⅡ)吸收高峰为波长680 nm处,又称P680。PSⅠ和PSⅡ通过电子传递链连接,并高度有序地排列在类囊体膜上,承担着电子传递和质子传递任务。 PSⅡ主要由PS
水循环在被子植物适应波动光强中的调控作用
自然条件下,植物叶片接受到的光照强度随时在波动,时而光照不足,时而光能过剩。当光强突然增加时,植物叶片吸收的过剩光能容易造成光系统活性损伤并影响植物生长。根据光合作用理论模型,环式电子传递和水水循环这两种替代电子传递途径都可以保护被子植物的光系统活性免受波动光强的损伤。然而一直以来,环式电子传递介导
昆明植物所在光合作用调控机制研究中取得系列进展
自然条件下,植物叶片接受到的光照强度随时在波动,时而光照不足,时而光能过剩。当光强突然增加时,植物叶片吸收的过剩光能容易造成光系统I活性损伤并影响植物生长。根据光合作用理论模型,环式电子传递和水水循环这两种替代电子传递途径都可以保护被子植物的光系统I活性免受波动光强的损伤。然而一直以来,环式电子
电子传递的工作原理
对以吡啶核苷酸作为辅酶的脱氢酶来说,从底物中移动的氢原子也仅只有一个,其他是作为电子+H+,向吡啶辅酶传递。在呼吸作用中分子态氧,是通过细胞色素系统接受电子传递,与氢结合生成水。细胞色素间的氧化还原随着铁红血素的二价、三价的变化而进行电子传递。通常底物的氧化,是根据从底物到氧的多价酸电子传递来进行的
电子传递有哪些类型?
在氧化还原反应中,有氧的传递、氢的传递和电子的传递,在生物体的氧化还原反应中也有同样的类型。加氧酶(oxygenase)的场合即是氧的传递,但氢的传递则认为是电子和氢离子的转移,与电子传递并无本质上的差别。
细胞电子传递的原理
对以吡啶核苷酸作为辅酶的脱氢酶来说,从底物中移动的氢原子也仅只有一个,其他是作为电子+H+,向吡啶辅酶传递。在呼吸作用中分子态氧,是通过细胞色素系统接受电子传递,与氢结合生成水。细胞色素间的氧化还原随着铁红血素的二价、三价的变化而进行电子传递。通常底物的氧化,是根据从底物到氧的多价酸电子传递来进行的
什么是非循环电子传递链?
非循环电子传递链从光系统Ⅱ出发,会裂解水,释出氧气,生产ATP与NADPH。非循环电子传递链过程大致如下:光系统Ⅱ→初级接受者→质体醌→细胞色素复合体→质体蓝素→光系统Ⅰ→初级接受者→铁氧化还原蛋白→还原酶
什么是循环电子传递链?
循环电子传递链不会产生氧气,因为电子来源并非裂解水。电子从光系统Ⅰ出发,最后会生产出ATP。循环电子传递链的过程如下:光系统Ⅰ→初级接受者→铁氧化还原蛋白→细胞色素复合体→质粒蓝素→光系统Ⅰ
光合电子传递-(photosynthetic-electron-transport)
光合作用中,受光激发推动的电子从 H2 O到辅酶Ⅱ( NADP )的传递过程。光合色素吸收光能后,把能量聚集到反应中心——一种特殊状态的叶绿素 a分子,引起电荷分离和光化学反应。一方面将水氧化,放出氧气;另一方面把电子传递给辅酶Ⅱ( NADP ),将它还原成 NADPH,其间经过一系列中间(电
光系统Ⅰ的催化过程
PS I 的作用中心色素分子P700,周围有LHC I ,P700激发态的电子原初受体是叶绿体a分子A0,次级受体A1为2个叶醌分子,再将电子传递给一个含4Fe-4S中心的铁硫蛋白(FeSx),最后电子供给含2Fe-2S中心的铁氧还蛋白(Fd),最后在Fd NADP还原酶(FNR)的催化下,将NAD