一种用于长距离的低成本量子点红外光电探测器

来自西班牙的一个研究小组开发了一种低成本的胶体量子点光电探测器,该探测器能够感应长波红外(IR),并有可能取代目前可用的,更昂贵的红外光电探测器(Nano Lett。,doi:10.1021 / acs .nanolett.9b04130)。研究人员称,这项新技术填补了光电检测光谱中的现有空白,并且可能对诸如环境监测,食品检查和气体分析等应用具有潜在应用。手持微型传感器芯片中红外光电探测器由胶体量子点组成,涂在带有金触点的透明基板上。 寻找更低成本的替代品 到目前为止,光电探测器技术还并不系统,硅光电探测器可用于可见/近红外范围,InGaAs光电探测器可用于短波红外区域。尽管确实存在可同时用于中波和长波IR的设备(例如CdHgTe或更特殊的检测器),但它们往往价格昂贵,制造复杂且与CMOS不兼容。 为了寻求更便宜的替代方法,ICFO –光子科学研究所的Gerasimos Konstantatos等希望创建带有胶体量子点......阅读全文

一种用于长距离的低成本量子点红外光电探测器

  来自西班牙的一个研究小组开发了一种低成本的胶体量子点光电探测器,该探测器能够感应长波红外(IR),并有可能取代目前可用的,更昂贵的红外光电探测器(Nano Lett。,doi:10.1021 / acs .nanolett.9b04130)。研究人员称,这项新技术填补了光电检测光谱中的现有空白,

美开发出新型量子点红外探测器

  美国伦斯勒理工学院的研究人员开发出了一种基于纳米技术的新型量子点红外探测器(QDIP)。这种以金为主要材料的新型元件可大幅提高现有红外设备的成像素质,将为下一代高清卫星相机和夜视设备的研发提供可能。相关论文发表在《纳米快报》杂志网站上。  由美国空军科研局资助的这一项目,通过在传统量子

新型量子点红外探测器灵敏度提高两倍

  美国伦斯勒理工学院的研究人员开发出了一种基于纳米技术的新型量子点红外探测器(QDIP)。这种以金为主要材料的新型元件可大幅提高现有红外设备的成像素质,将为下一代高清卫星相机和夜视设备的研发提供可能。相关论文发表在《纳米快报》杂志网站上。   由美国空军科研局资助的这一

一种基于SOI量子点异质结的红外探测器

红外探测对环境的适应性优于可见光,可在夜间及恶劣环境下工作,且红外探测隐蔽性好,比雷达和激光探测更安全,对伪装目标识别率更高,此外与雷达系统相比,红外系统具有体积小、重量轻、功耗低等优点,因此在军事上红外探测可应用于红外夜视、红外制导、红外侦查、红外报警等应用;红外探测技术不仅在军事方面有很多应用,

红外光电探测器的工作原理

光电探测器的原理是由辐射引起被照射材料电导率发生改变。光电探测器在军事和国民经济的各个领域有广泛用途。 红外光电探测器从本质上来说可以非常有效率的,与其可以防止周围可见光的干扰有极大地关系,它zui大的特点就在于可以进行无接触的探测,而且不损伤被测物体,这是很多消费者都希望的。目前的

近红外光电探测器的发展与应用

1982 年 4 月— 6 月,英国和阿根廷之间爆发了马尔维纳斯群岛战争。4 月 13 日夜间,英国攻击阿根廷据守的最大据点斯坦利港。当时3000名英军的所有枪支、火炮都配备有红外夜视仪,能够在黑夜中清楚地发现阿根廷军目标。而阿根廷军队缺乏夜视装备,不能有效地发现英军目标,处境十分被动。最终,英国军

光电探测器简介

  光电探测器的原理是由辐射引起被照射材料电导率发生改变。光电探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。光电导体的另一应用是用它做摄像管靶面。为了避免光生载流子扩散引起图像

合成新型近红外发光量子点光致发光量子效率可达25%

  对于太阳能转换器件和生物成像应用程序来说,使用发射近红外光、具有显著斯托克斯位移且再吸收损失小的材料非常重要。近期新加坡国立大学化学系便合成了这样一种新型材料——四元混合巨壳型量子点(InAs−In(Zn)P−ZnSe−ZnS)。这种新型量子点可以实现显著斯托克斯位移,且光致发光量子效率可达25

可调谐红外双波段光电探测器,助力多光谱探测发展

  红外双波段光电探测器是重要的多光谱探测器件,特别是近红外/短波红外区域,相较于可见光有更强的穿透能力,相较于中波红外可以以较低的损耗识别冷背景的物体,因此广泛应用于民用和军事领域。当前红外双波段探测器主要面临光谱不可调谐,器件结构复杂而不易与读出集成电路相结合的挑战。  据麦姆斯咨询报道,近日,

光电探测器的分类

光电探测器能把光信号转换为电信号。根据器件对辐射响应的方式不同或者说器件工作的机理不同,光电探测器可分为两大类:一类是光子探测器;另一类是热探测器。

光电探测器工作原理

看了半天。原来你说的就是同一个东西纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质

光电探测器的概述

  光电探测器在光通信系统中实现将光转变成电的作用,这主要是基于半导体材料的光生伏特效应,所谓的光生伏特效应是指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。(光电导效应是指在光线作用下,电子吸收光子能量从键合状态过度到自由状态,而引起材料电导率的变化的象。即当光照射到光电导体

光电探测器工作原理

看了半天。原来你说的就是同一个东西纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质

什么是光电探测器

电导探测器photoconductive detector利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波

光电探测器工作原理

看了半天。原来你说的就是同一个东西纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质

什么是光电探测器

电导探测器photoconductive detector利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波

alphalas-光电探测器介绍

  alphalas 光电探测器属于光线传感器的一种,它常用于摄像头和其他成像设备中。它们可以感知称为“光子”的基本粒子的图案,并通过这些图案创造出图像。不同的alphalas 光电探测器用于感知光谱的不同部分。例如,夜视眼镜中使用的光电探测器就是用于感知肉眼不可见的热辐射。还有一些光电探测

光电探测器工作原理

纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质(即其他的材料,比如 锗 等)然后

光电探测器的分类

  光电探测器是指利用辐射引起被照射材料电导率改变的物理现象的原理而制成的器件,其在军事和国民经济的各个领域有广泛用途。   光电探测器的分类:   光电探测器分为光电二极管、雪崩光电管、四象限探测器、位敏探测器、波长感应探测器。   1、 光电二极管(PIN):应用于一般通用场合。针对特殊应

使用快速太赫兹量子阱光电探测器的太赫兹光检测(二)

ResultsBefore demonstrating the fast terahertz detection, we first characterize the electrical and optical performances of the terahertz QWP. The

使用快速太赫兹量子阱光电探测器的太赫兹光检测(三)

DiscussionIn this work we demonstrate that the fast terahertz QWP detector is capable of responding 6.2 GHz modulated terahertz light. We should

使用快速太赫兹量子阱光电探测器的太赫兹光检测(一)

6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectorsHua Li,1 Wen-Jian Wan,1 Zhi-Yong Tan,1 Zhang-Long Fu,1 Hai

使用快速太赫兹量子阱光电探测器的太赫兹光检测(四)

MethodsSample growth and device fabricationThe QWP is based on the one single photon design and the core region consists of 30-period AlGaAs/GaAs

荧光碳量子点的太赫兹光电特性研究获新进展

近日,中国科学院合肥物质科学研究院固体物理研究所研究员徐文课题组与西南大学合作,利用太赫兹时域光谱(THz TDS)技术,探究荧光碳量子点(CQDs)的光电特性,发现在80-280 K温度范围内,红光荧光量子点(R-CQDs)在0.2-1.2 THz频段为光绝缘体(即对THz光全透),而蓝光荧光量子

荧光碳量子点的太赫兹光电特性研究获新进展

  近日,中国科学院合肥物质科学研究院固体物理研究所研究员徐文课题组与西南大学合作,利用太赫兹时域光谱(THz TDS)技术,探究荧光碳量子点(CQDs)的光电特性,发现在80-280 K温度范围内,红光荧光量子点(R-CQDs)在0.2-1.2 THz频段为光绝缘体(即对THz光全透),而蓝光荧光

光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放

光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放

光电探测器的技术要求

  为了提高传输效率并且无畸变地变换光电信号,光电探测器不仅要和被测信号、光学系统相匹配,而且要和后续的电子线路在特性和工作参数上相匹配,使每个相互连接的器件都处于最佳的工作状态。现将光电探测器件的应用选择要点归纳如下:  光电探测器必须和辐射信号源及光学系统在光谱特性上相匹配。如果测量波长是紫外波

光电探测器的主要应用

光电导探测器photoconductive detector利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外

光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放