DSC在药物分析中的应用

近年来,热分析技术在制药工业中的应用越来越广泛,本文以案例的形式介绍了热分析中的差示扫描量热仪,在药物纯度、药品多晶型分析、冷冻干燥工艺的优化、蛋白质变性的检测等几个方面的应用。 药品研发与生产中,必须监控其物化性质,如纯度、晶型、稳定性和安全性,以确保药物具有预期的药性。众所周知,有机化合物包括药品常常具有多种结构及晶态,这势必影响到药品的加工条件、期稳定性、衰变及生物投递能力。药品的最终组成中包含了多种活性组份以及它们之间相互作用而生成的产物,当然还有赋形剂、水分、药片涂层等,十分复杂。因此对其全面的表征也变得越来越重要,其中最理想的测试方法之一就是热分析。 热分析具有用量少、方法灵敏、快速的特点,在较短的时间内可获得需要复杂技术或长期研究才能得到的各种信息。差示扫描量热仪(DSC)是目前在医药领域应用最广的热分析仪之一,DSC通过测量药物热焓和温度随程序温控的变化,具体可以研究的信息如药物纯度,药物的多晶及亚......阅读全文

DSC曲线怎么分析

以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,以温度T或时间t为横坐标,可以测定多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。该法使用温度范围宽(-175~725℃)、分辨率高、试样用量少。适用于无机物、有机化合物及药物

DSC曲线怎么分析

以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,以温度T或时间t为横坐标,可以测定多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。该法使用温度范围宽(-175~725℃)、分辨率高、试样用量少。适用于无机物、有机化合物及药物

实验室分析方法典型热分析法介绍DTA、DSC理论差异

DTA理论监视样品与参比物之间的温度差作为温度的函数。功率补偿型DSC(Differential Scanning Calorimetry)理论在样品受到程序温度的控制下,DSC用来监视样品吸收或释放热流与参比物吸收或释放热流之间的差别。功率补偿型DSC原理图热流型DSC(Differential

差示扫描量热仪DSC与差热分析仪DTA的区别分析

   20世纪60年代,差示扫描量热法(Differential Scanning Calorimetry,DSC)被提出,其特点加热和冷却速率快,全数字控制,传感器可自由更换,自动气体切换,操作与设置方便,提供多种坩埚类型,广泛应用于聚合物、橡胶、涂料、粘合剂、药品、精细化学品、食物工业等领域,进

差示扫描量热仪DSC和差热分析仪DTA区别

DSC:差示扫描量热计;DTA:差热分析.我认为DSC(差示扫描量热法)比较好,可以测定物质的熔点、比热容、玻璃化转变温度、纯度、结晶度等差热扫描量热仪——测量的结果是温度差差示扫描量热仪——测量的结果是热流,定量性较好差热分析 (DTA)是在程序控制温度条件下,测量样品与参比物之间的温度差与温度关

差示扫描量热仪补偿型DSC和热流型DSC的区别

差示扫描量热仪作为常见的实验室化验设备—量热仪系列产品中的一员,在整个的量热仪家族中占据这举足轻重的地位。根据测量方法的不同,可分为功率补偿型DSC和热流型DSC,主要用于定量测量各种热力学参数和动力学参数。差示扫描量热法是在程序升温的条件下,测量试样与参比物之间的能量差随温度变化的一种分析方法。差

差示扫描量热仪补偿型DSC和热流型DSC的区别

 差示扫描量热仪作为常见的实验室化验设备—量热仪系列产品中的一员,在整个的量热仪家族中占据这举足轻重的地位。根据测量方法的不同,可分为功率补偿型DSC和热流型DSC,主要用于定量测量各种热力学参数和动力学参数。   差示扫描量热法是在程序升温的条件下,测量试样与参比物之间的能量差随温度变化的一种分析

差示扫描量热仪补偿型DSC和热流型DSC的区别

  差示扫描量热仪作为常见的实验室化验设备—量热仪系列产品中的一员,在整个的量热仪家族中占据这举足轻重的地位。根据测量方法的不同,可分为功率补偿型DSC和热流型DSC,主要用于定量测量各种热力学参数和动力学参数  差示扫描量热法是在程序升温的条件下,测量试样与参比物之间的能量差随温度变化的一种分析方

差示扫描量热仪补偿型DSC和热流型DSC的区别

  差示扫描量热仪作为常见的实验室化验设备—量热仪系列产品中的一员,在整个的量热仪家族中占据这举足轻重的地位。根据测量方法的不同,可分为功率补偿型DSC和热流型DSC,主要用于定量测量各种热力学参数和动力学参数。  差示扫描量热法是在程序升温的条件下,测量试样与参比物之间的能量差随温度变化的一种分析

梅特勒托利多DSC823e差示扫描量热仪-热分析仪

DSC823e是目前全世界商品化的DSC仪器中量热灵敏度最高的(同等测试实验条件下的荷兰国际热分析协会的数据表明)。 它能进行多频温度调制DSC(TOPEM®TMDSC)测试。具有超强测试性能,解析度、温度精度和重复性极高。信噪比很大,信号时间常数很小,分峰能力极强。它可配备两种DSC传感器:FRS

实验室分析方法典型热分析法介绍DTA、DSC基本内容

热重分析仪(Thermal Gravimetric Analyzer)是一种利用热重法检测物质温度-质量变化关系的仪器。热重法是在程序控温下,测量物质的质量随温度(或时间)的变化关系。当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。这时热重曲线就不是直线而是

什么是差示扫描量热仪DSC

DSC:差示扫描量热计;DTA:差热分析.我认为DSC(差示扫描量热法)比较好,可以测定物质的熔点、比热容、玻璃化转变温度、纯度、结晶度等差热扫描量热仪——测量的结果是温度差差示扫描量热仪——测量的结果是热流,定量性较好差热分析 (DTA)是在程序控制温度条件下,测量样品与参比物之间的温度差与温度关

什么是差示扫描量热仪DSC

DSC:差示扫描量热计;DTA:差热分析.我认为DSC(差示扫描量热法)比较好,可以测定物质的熔点、比热容、玻璃化转变温度、纯度、结晶度等差热扫描量热仪——测量的结果是温度差差示扫描量热仪——测量的结果是热流,定量性较好差热分析 (DTA)是在程序控制温度条件下,测量样品与参比物之间的温度差与温度关

高压差示扫描量热仪(HP-DSC)

压力升高会对所有的物理变化与化学反应(其中发生体积变化)产生影响。压力下的热效应研究– 提高反应速率或提高蒸发温度,对于材料测试、过程开发或质量控制,通常需要在一定压力下进行 DSC 测量。HP DSC 2+ — 高压差示扫描量热仪更短的分析时间–更高的压力与温度加速化学反应在过程条件下测量 –模拟

量热仪与DSC有什么区别

量热仪主要是根据化验品的反映判断热值。DSC是扫描物品表民热值

DSC差示扫描量热仪的介绍

DSC测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。材料的特性:如玻璃化转变温度。冷结晶、相转变、熔融、结晶、热稳定性、固化/交联、氧化诱导期等,都是DSC的研发领域。原理:差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率

什么是差示扫描量热仪DSC

DSC:差示扫描量热计;DTA:差热分析.我认为DSC(差示扫描量热法)比较好,可以测定物质的熔点、比热容、玻璃化转变温度、纯度、结晶度等差热扫描量热仪——测量的结果是温度差差示扫描量热仪——测量的结果是热流,定量性较好差热分析 (DTA)是在程序控制温度条件下,测量样品与参比物之间的温度差与温度关

差示扫描量热仪(DSC)的应用

1、鉴于DSC能定量的量热、灵敏度高,应用领域很宽,涉及热效应的物理变化或化学变化过程均可采用DSC来进行测定2、峰的位置、形状、峰的数目与物质的性质有关,故可用来定性的表征和鉴定物质,而峰的面积与反应热焓有关,故可以用来定量计算参与反应的物质的量或者测定热化学参数玻璃化转变温度Tg的测定无定形高聚

差示扫描量热(DSC)方法的介绍

  差示扫描量热法是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。可分为功率补偿型DSC和热流型DSC。  功率补偿型的DSC是内加热式,装样品和参比物的支持器是各自独立的元件,在样品和参比物的底部各有一个加热用的铂热电阻和一个测温用的铂传感器。它是采用动态零位平衡原理,即要求

差示扫描量热仪DSC-5+-量热新标准

  DSC革新 新一代量热性能  差示扫描量热仪(DSC)测量的是材料由于物理或化学性质变化而发生焓变随温度或时间的关系。DSC 5+树立了新标准,提供了卓越的性能和更高效的DSC。  METTLER TOLEDO DSC 5+的特点与优点:  • FlexMode™,可以选择功率补偿或热通量模式

相比单独的-TG-与/或-DSC-测试,同步热分析仪的特点

同步热分析将热重分析 TG 与差热分析 DTA 或差示扫描量热 DSC 结合为一体,在同一次测量中利用同一样品可同步得到热重与差热信息。相比单独的 TG 与/或 DSC 测试,具有如下显著优点:通过一次测量,即可获取质量变化与热效应两种信息,不仅方便而节省时间,同时由于只需要更少的样品,对于样品很昂

相比单独的TG与DSC测试,同步热分析仪有哪些优点?

同步热分析仪将热重分析 TG 与差热分析 DTA 或差示扫描量热 DSC 结合为一体,在同一次测量中利用同一样品可同步得到热重与差热信息。同度步热分知析仪综合研究热重、热焓变化、时间、温度之间的关系。广泛应用于化学,物理,材料,医学,石油,化工等领域。可测定高分子材料的分解温度,熔点,玻璃化温度,药

实验室分析方法典型热分析法介绍DTA和DSC之间的区别

DTA:温度差被测量放大并且被记录。只有在使用合适的参比物的情况下,峰面积才可以被转换成热量。  DSC:样品与参比物的温度差是可控制的电功率,以保持样品与参比物处于同一温度。峰面积直接对应与样品吸收或释放的热量。现代DTA(同时也称之为热流型DCS):在薄盘中测量温度,因此测定来自于坩埚的热流差,

差示扫描量热仪(DSC)操作规程

一、适用范围:材料升温、降温或恒温时发生的热流量及物理转变和化学反应。如:吸热和放热效应、比热容、熔融焓、结晶行为、无定形材料的玻璃化转变温度、氧化分解、硫化反应等。二、试验前准备:1、样品的制备:切一小片试样,平放在样品盘底部(称样品质量:5到10毫克)。2、用模具轻压,将样品密封在盘中。3、注意

差示扫描量热仪(DSC)操作规程

一、适用范围:材料升温、降温或恒温时发生的热流量及物理转变和化学反应。如:吸热和放热效应、比热容、熔融焓、结晶行为、无定形材料的玻璃化转变温度、氧化分解、硫化反应等。二、试验前准备:1、样品的制备:切一小片试样,平放在样品盘底部(称样品质量:5到10毫克)。2、用模具轻压,将样品密封在盘中。3、注意

DSCHP-高压差示扫描量热仪

 材料的物理过程和化学反应会受到气体压力的影响,需要在一定压力下进行DSC测试。    DSC-HP高压差示扫描量热仪是推出的一款高压DSC,用于测量在一定压力下材料内部热转变相关的温度、热流的关系。   应用范围广泛,应用于:氧化稳定性、聚合物固化反应、相转变、熔融、黏合剂的交联、高压氧化诱导期、

DSC差示扫描量热法的原理方法

DSC的基本原理差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的

DSCHP-高压差示扫描量热仪

产品介绍:   材料的物理过程和化学反应会受到气体压力的影响,需要在一定压力下进行DSC测试。    DSC-HP高压差示扫描量热仪是最新推出的一款高压DSC,用于测量在一定压力下材料内部热转变相关的温度、热流的关系。   应用范围广泛,应用于:氧化稳定性、聚合物固化反应、相转变、熔融、黏合剂的交联

闪速差示扫描量热法(Flash-DSC)

Flash DSC 1Flash DSC 1为快速扫描DSC带来了革命性变化。 该仪器可分析以前无法测量的结构重组过程。 Flash DSC 1是对传统DSC的完美补充。 现在,升温速率范围已超过7个数量级。采用市售产品中速度最快的DSC——它是研究快速结晶和重组过程的完美选择它的升温与降温速率极高

差示扫描量热仪(DSC)操作规程

一、适用范围:材料升温、降温或恒温时发生的热流量及物理转变和化学反应。如:吸热和放热效应、比热容、熔融焓、结晶行为、无定形材料的玻璃化转变温度、氧化分解、硫化反应等。 二、试验前准备:1、样品的制备:切一小片试样,平放在样品盘底部(称样品质量:5到10毫克)。2、用模具轻压,将样品密封在盘中。3、注