RO浓水反硝化脱总氮方案及计算书

1.设计范围 反硝化滤池脱总氮的工艺设计。包括全部设备选型及非标设备设计、工艺管道设计;本系统内的的电气、自动控制及仪表系统设计; 2.设计进水条件 RO浓水水量3000m3/d,TN为80mg/L;雨季和冬季防冻时水量达4000m3/d,TN为40mg/L时,仍能满足TN≤10mg/L的处理要求。 进水呈中性,含钙离子2mg/L、镁离子300mg/L,主要是硝态氮。 设计进水:化学需氧量(CODcr)≤250mg/L;TN≤80mg/L(硝态氮为主);设计出水水质:化学需氧量(CODcr)≤400mg/L;TN(以N计)≤10mg/L 3.工艺流程概述 本系统主体工艺包括两部分,即反硝化滤池和配套的清水池及反冲洗废水池部分。反硝化滤池的主要作用是将废水中的硝态氮通过反硝化过程而转化为氮气,从而达到脱总氮的目的。 4.系统工艺流程详细说明 原水经加压提升进入反硝化滤池总进水分配槽,由总进水分配槽分配至每单元......阅读全文

RO浓水反硝化脱总氮方案及计算书

  1.设计范围  反硝化滤池脱总氮的工艺设计。包括全部设备选型及非标设备设计、工艺管道设计;本系统内的的电气、自动控制及仪表系统设计;  2.设计进水条件  RO浓水水量3000m3/d,TN为80mg/L;雨季和冬季防冻时水量达4000m3/d,TN为40mg/L时,仍能满足TN≤10mg/L的

硝化反硝化耦合机制主导贫氮生态系统氧化亚氮脉冲排放

  土壤氮转化过程影响生态系统生产力及土壤氮素的损失途径和潜力,微生物硝化和反硝化过程产生氧化亚氮(N2O)释放到大气中,使土壤成为大气N2O的主要来源,一般认为施肥农田土壤是强排放源,自然土壤则为弱排放源。然而,温带至寒带自然生态系统在冬春转换期被广泛观测到脉冲式排放,导致自然土壤在全球N2O排放

垃圾填埋场甲烷氧化耦合反硝化研究破解碳氮循环过程

  好氧生物反应器填埋技术是垃圾卫生填埋中最常见和最有效的技术之一。其通过渗滤液曝气回灌使填埋场成为一个复合“净化反应器”,可加速场内微生物降解有机质,去除氨氮等污染物。然而,在矿化垃圾填埋场中使用该技术,存在有机质含量低,无法彻底去除氮素的问题。并且,填埋场下层产生的甲烷,既增加“温室效应”又存在

关于反硝化细菌的简介

  反硝化细菌,是指一类能将硝态氮(NO-3N)还原为气态氮(N2)的细菌群,已知的有10科、50个属以上的种类具有反硝化作用。自然界中最普遍的反硝化细菌是假单胞菌属;其次是产碱杆菌属。  在土壤氧气不足时,将硝酸盐还原成亚硝酸盐,并进一步把亚硝酸盐还原为氨及游离氮的细菌。能将硝酸盐还原,并产生分子

浅谈曝气生物滤池硝化和反硝化工艺流程

  曝气生物滤池集生物氧化和截留悬浮固体于一体节省后续二次沉淀池和污泥回流,在保证处理效果的前提下使处理工艺简化。图片来源于网络  曝气生物滤池具有容积负荷高、水力负荷大、水力停留时间短、所需基建投资少、占地面积小、处理出水水质好等特点,又由于曝气生物滤池没有污泥膨胀问题,微生物不会流失,能保持较高

简述反硝化细菌的生存需求

  反硝化细菌如同腐生菌那样,从含碳化合物的广泛范围里氧化并建造自己的体内物质。在土壤中根的分泌物、死亡的植物根的残体及其分解的地上部,对这些微生物来说都是有机质的来源。但是它们也能够利用包含在土壤有机质富里酸组分中的易分解化合物。在自然条件下淹水时,反硝化作用引起土壤氮素的损失,是由有机质含量低的

关于反硝化细菌的应用介绍

  采用优良反硝化菌株经特殊工艺发酵而成。菌株反硝化能力强,能够以亚硝态氮和硝态氮作氮源,活化简单,繁殖迅速,作用效果显著,24小时可见效。针对养殖水体亚硝酸盐偏高的情况有特效;针对藻类过度繁殖的水体能够大量消耗氮素营养,切断藻类氮素营养,维护良好水色;菌株在溶氧充足及厌氧条件下均可生存并进行反硝化

概述反硝化细菌的分布用途

  它们在氙气条件下,利用硝酸中的氧,氧化有机物而获得自身生命活动所需的能量。反硝化细菌广泛分布于土壤、厩肥和污水中。可以将硝态氮转化为氮气而不是氨态氮,与硝化细菌作用不完全相反。主要应用于污水处理,如景观水治理,城市内河治理,水产养殖处理等,其中水产养殖污水处理应用最为广泛。  反硝化细菌在养殖水

有哪些因素影响反硝化速率

影响反硝化的因素:(1)温度反硝化细菌的最适合生长温度为20-401;低于151时,反硝化速率明显降低。因此,在冬季低温季节,为了保持一定的反硝化速率,需要提高污泥停留时间,同时降低负荷或提高污水的停留时间。  (2)溶解氧必须保持严格的缺氧状态,保持氧化还原电位为-110--50mV;为使反硝化反

成都生物所研究获得异养硝化好氧反硝化细菌

  传统的氨氮废水处理是通过自养硝化菌的硝化作用与异养反硝化菌的反硝化作用的组合工艺使氨氮转化为氮气,工艺冗长,能耗大,不仅增加了运行费用,还增加了运行管理和后续处理的难度。   11月5日,中科院成都生物所“一株异养硝化好氧反硝化细菌及其培养方法和用途”获国家知识产权局发明ZL。该

我国在土壤反硝化过程的氮同位素分馏效应研究获进展

  反硝化过程被认为是生态系统气态氮损失的主要途径,也是导致生态系统氮限制的重要机制。但是,由于缺乏从生态系统尺度上直接测定反硝化作用速率的技术,在过去对氮循环的研究中,生态系统尺度上的反硝化速率一直难以量化。近年来,硝酸盐的15N/14N比值被用于量化生态系统尺度上的反硝化速率。但是,利用15N同

亚热带所揭示硝化抑制剂对蔬菜土硝化和反硝化细菌的影响

  氮肥是农业生产中施用最广的肥料之一,我国氮肥用量大但利用率低,平均利用率不到35%,远低于发达国家。由于氮肥使用不合理引发的环境富营养化、地下水硝酸盐超标等问题频发。另外,氮肥的大量施用还导致温室气体N2O 大量排放而加重全球气候变化。因此,对土壤氮素循环过程及调控机理研究一直受到

反硝化细菌的世代周期是多少?

硝化菌泥龄应该在5~8天左右反硝化细菌泥龄应该在15天左右

反硝化细菌的基本信息介绍

  反硝化细菌的生理类群包括广泛的腐生微生物组成。在通常氧化有机物质的条件下是依靠游离态O2,而在转为呼吸的嫌气的条件下,则依靠硝酸盐的结合态氧,硝酸盐是氢的受体。  反硝化细菌能生存于作氮源用的硝酸盐的介质中,它能利用这种化合物既可作为能量代谢,又可用于物质代谢。反硝化细菌在土壤氧气不足的条件下,

小型牙科诊所污水处理设备

利用滤料及其表面附着的生物膜去除氮、有机污染物和悬浮物。根据处理目标不同分为曝气生物滤池和反硝化滤池。(1)(适用范围)适用于以城镇污水二级处理/二级强化处理出水的深度处理,也可用于臭氧氧化出水的后处理。曝气生物滤池适用于氨氮的去除,反硝化滤池适用于硝态氮的去除。(2)(技术特点)去除氨氮(或总氮)

反硝化去除率为什么由回流比决定

涉及到脱氮除磷工艺,最早是A/O/A工艺,因为总是先硝化,才有反硝化,但是在反硝化过程当中,需要外加营养源,而在硝化过程当中,脱氮又要先脱碳,这样两相比较,有人就提出了前置反硝化,就是大家看到的A/A/O工艺了。那么,接下来,我们在好氧硝化好的硝化液必须回流到兼氧池,才能进行反硝化,所以才有内循环或

废水处理中总氮超标的原因及解决方法

一、总氮超标定义  总氮,简称为TN,水中的总氮含量是衡量水质的重要污水处理指标之一。总氮的定义是水中各种形态无机和有机氮的总量。包括NO3-、NO2-和NH4+等无机氮和蛋白质、氨基酸和有机胺等有机氮,以每升水含氮毫克数计算。常被用来表示水体受营养物质污染的程度。  二、总氮超标的原因  1、内、

总氮超标什么原因

工业废水处理中,各行业有关总氮的问题不少,总氮包括有机氮、氨氮、硝态氮,每种成分都可能存在问题。随着人们对污水总氮处理问题的研究,有大量的新型脱氮工艺涌现,但由于工艺不成熟,大部分污水处理厂仍然采用传统的生物脱氮法。传统的生物脱氮工艺基本原理是在生物处理过程中,先将有机氮转化为氨氮,再通过硝化菌和反

总氮超标什么原因

工业废水处理中,各行业有关总氮的问题不少,总氮包括有机氮、氨氮、硝态氮,每种成分都可能存在问题。随着人们对污水总氮处理问题的研究,有大量的新型脱氮工艺涌现,但由于工艺不成熟,大部分污水处理厂仍然采用传统的生物脱氮法。传统的生物脱氮工艺基本原理是在生物处理过程中,先将有机氮转化为氨氮,再通过硝化菌和反

总氮超标什么原因

工业废水处理中,各行业有关总氮的问题不少,总氮包括有机氮、氨氮、硝态氮,每种成分都可能存在问题。随着人们对污水总氮处理问题的研究,有大量的新型脱氮工艺涌现,但由于工艺不成熟,大部分污水处理厂仍然采用传统的生物脱氮法。传统的生物脱氮工艺基本原理是在生物处理过程中,先将有机氮转化为氨氮,再通过硝化菌和反

总氮超标什么原因

工业废水处理中,各行业有关总氮的问题不少,总氮包括有机氮、氨氮、硝态氮,每种成分都可能存在问题。随着人们对污水总氮处理问题的研究,有大量的新型脱氮工艺涌现,但由于工艺不成熟,大部分污水处理厂仍然采用传统的生物脱氮法。传统的生物脱氮工艺基本原理是在生物处理过程中,先将有机氮转化为氨氮,再通过硝化菌和反

总氮超标什么原因

工业废水处理中,各行业有关总氮的问题不少,总氮包括有机氮、氨氮、硝态氮,每种成分都可能存在问题。随着人们对污水总氮处理问题的研究,有大量的新型脱氮工艺涌现,但由于工艺不成熟,大部分污水处理厂仍然采用传统的生物脱氮法。传统的生物脱氮工艺基本原理是在生物处理过程中,先将有机氮转化为氨氮,再通过硝化菌和反

总氮超标什么原因

工业废水处理中,各行业有关总氮的问题不少,总氮包括有机氮、氨氮、硝态氮,每种成分都可能存在问题。随着人们对污水总氮处理问题的研究,有大量的新型脱氮工艺涌现,但由于工艺不成熟,大部分污水处理厂仍然采用传统的生物脱氮法。传统的生物脱氮工艺基本原理是在生物处理过程中,先将有机氮转化为氨氮,再通过硝化菌和反

总氮超标什么原因

工业废水处理中,各行业有关总氮的问题不少,总氮包括有机氮、氨氮、硝态氮,每种成分都可能存在问题。随着人们对污水总氮处理问题的研究,有大量的新型脱氮工艺涌现,但由于工艺不成熟,大部分污水处理厂仍然采用传统的生物脱氮法。传统的生物脱氮工艺基本原理是在生物处理过程中,先将有机氮转化为氨氮,再通过硝化菌和反

总氮超标的原因与处理方法

  污水总氮超标的原因:  1. 内、外回流比生物反硝化系统外回流比较单纯生物硝化系统要小。  2. 反硝化系统污泥沉速较快。缺氧区溶解氧DO过高。  3. 温度调控不当,当低于15℃时,反硝化速率将明显降低,至5℃时,反硝化将趋于停止。  4. BOD5/TKN 因为反硝化细菌是在分解有机物的过程

废水中总氮超标的原因及解决办法

  总氮,简称为TN,水中的总氮含量是衡量水质的重要污水处理指标之一。总氮的定义是水中各种形态无机和有机氮的总量。包括NO3-、NO2-和NH4+等无机氮和蛋白质、氨基酸和有机胺等有机氮,以每升水含氮毫克数计算。常被用来表示水体受营养物质污染的程度。  总氮超标的原因  1、内、外回流比生物反硝化系

总氮超标的原因

  随着国家环境保护力度的加大国家和地方政府相继出台一系列环保加严标准要求企业严格按照排放标准执行,其中污水总氮排放需达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级A标准。  水体中的总氮处理是水污染控制行业关注的重点问题,因为总氮超标不仅会导致水体富营养化,如果硝态氮浓度过

污水总氮超标原因和解决办法

一、废水中总氮的构成  废水中总氮主要由氨氮、有机氮、硝态氮、亚硝态氮组成,其中氨氮主要来自于氨水以及诸如氯化铵等无机物。有机氮主要来自于一些有机物中的含氮基团,比如有机胺类等。硝态氮在自然界中比较稳定,且含量较高,比如机械化学等工业使用大量与硝酸盐相关的原材料作为氧化剂,同时很多污水通过前期生化以

反硝化细菌的筛选及培养条件的研究

微生物在自然界氮素循环中起着重要作用,如固氮作用、氨化作用、硝化作用、反硝化作用( denitrification ) 。其中,硝化作用与反硝化作用维持自然界氨的平衡及氮的正常循环。 氨化作用由氨化细菌或真菌的作用将 有机氮分解成为氨与氨化合物, 硝化作用由亚硝酸盐 细菌和硝酸盐细菌将氨化合

去总氮药剂

  一.何为总氮   总氮的定义是水中各种形态无机和有机氮的总量。包括NO3-、NO2-和NH4+等无机氮和蛋白质、氨基酸和有机胺等有机氮,以每升水含氮毫克数计算。常被用来表示水体受营养物质污染的程度。总氮浓度高易导致微生物大量繁殖,浮游生物生长旺盛,出现富营养化状态。   那么总氮的去除方法有哪些