原子吸收光谱分析中的干扰及消除

虽然原子吸收分析中的干扰比较少,并且容易克服,但在许多情况下是不容忽视的。为了得到正确的分析结果,了解干扰的来源和消除是非常重要的。1 物理干扰及其消除方法物理干扰是指试样左转移,蒸发和原子化过程中,由于试样任何物理性质的变化而引起的原子吸收信号强度变化的效应。物理干扰属非选择性干扰。1.1物理干扰产生的原因在火焰原子吸收中,试样溶液的性质发生任何变化,都直接或间接的影响原子阶级效率。如试样的粘度生生变化时,则影响吸喷速率进而影响雾量和雾化交率。毛细管的内径和长度以及空气的流量同样影响吸喷速率。试样的表面张力和粘度的变化,将影响雾滴的细度、脱溶剂效率和蒸发效率,最终影响到原子化效率。当试样中存在大量的基体元素时,它们在火焰中蒸发解离时,不仅要消耗大量的热量,而且在蒸发过程中,有可能包裹待测元素,延缓待测元素的蒸发、影响原子化效率。物理干扰一般都是负干扰,最终影响火焰分析体积中原子的密度。1.2消除物理干扰的方法为消除物理干扰,保......阅读全文

原子吸收分光光度法干扰及消除

  一. 光谱干扰    1. 在测定波长附近有单色器不能分离的待测元素的邻近线 ——减小狭缝宽度    2. 灯内有单色器不能分离的非待测元素的辐射 ——高纯元素灯    3. 待测元素分析线可能与共存元素吸收线十分接近——另选分析线或化学分离   二. 电离干扰   待测元素在高温原子

原子吸收AAS测重金属的主要干扰及消除

  重金属原子吸收分析主要存在4大干扰,分别是:物理干扰、化学干扰、电离干扰、光谱干扰。  一般重金属原子吸收分析中的干扰与消除都可以通过以下几个方法解决:合理的利用检测夹缝的宽度、加入适量的试剂、或者直接选择物理干扰以及化学干扰等,这些方法都可以减少这些干扰。所以,在重金属原子分析中的干扰与消除的

原子吸收分析法中光谱干扰消除与抑制

按照光谱干扰分类为谱线干扰和背景干扰,光谱干扰的消除和抑制也可以划分为两类。首先,谱线干扰是由单色器光谱通带内进入了发射线的临近线或其他吸收线引起的,因此可通过提高仪器分辨度来减小误差,具体做法是减小单色器的光谱通带的宽度,从而使元素的共振吸收线与干扰曲线完全分开,只允许共振吸收线通过。此外,还可以

原子吸收分析法中光谱干扰消除与抑制

按照光谱干扰分类为谱线干扰和背景干扰,光谱干扰的消除和抑制也可以划分为两类。首先,谱线干扰是由单色器光谱通带内进入了发射线的临近线或其他吸收线引起的,因此可通过提高仪器分辨度来减小误差,具体做法是减小单色器的光谱通带的宽度,从而使元素的共振吸收线与干扰曲线完全分开,只允许共振吸收线通过。此外,还可以

原子吸收分析法中化学干扰消除与抑制方法

化学干扰主要是由待测元素与共存组分发生化学变化产生的,主要受待测物质与共存组分性质的影响。基于此,抑制化学干扰可从以下七个方面进行:一,在试样中添加释放剂,释放剂可以和与待测无反应的共存组分发生化学反应形成更难解离、更稳定的化合物,从而在与待测物与其共存组分的竞争中占据优势,将待测元素分离出来。例如

原子吸收光谱分析中的物理干扰产生原因

在火焰原子吸收中,试样溶液的性质发生任何变化,都直接或间接影响原子化各级效率。如试样的黏度发生变化,则影响吸喷速率进而影响雾量和雾化效率。若标样的黏度比试样小,分析结果误差是负的。当试样中存在大量基体元素时,在蒸发解离过程中饭不仅消耗大量热量,还可能包裹待测元素,延缓待测元素的蒸发,影响原子化效率。

原子吸收分光光度法化学干扰及消除

  待测元素不能从它的化合物中全部离解出来或与共存组分生成难离解的化合物氧化物、氮化物、氢氧化物、碳化物等。  抑制方法:  ①加释放剂 与干扰组分形成更稳定的或更难挥发的化合物,使待测元素释放出来  (如:La、Sr、Mg、Ca、Ba 等的盐类及 EDTA 等)  例如:PO43 -干扰 Ca 的

原子吸收分光光度计的干扰及消除方法

  原子吸收分光光度计的干扰及消除方法:  (1)物理干扰物理干扰是指试样在转移、蒸发过程中任何物理因素变化而引起的干扰效应。属于这类干扰的因素有:试液的粘度、溶剂的蒸汽压、雾化气体的压力等。物理干扰是非选择性干扰,对试样各元素的影响基本是相似的。 配制与被测试样相似的标准样品,是消除物理干扰的

原子吸收中有哪些干扰因素?消除干扰因素的方法有哪些

物理干扰 物理干扰是指试样在转移、蒸发过程中任何物理因素变化而引起的干扰效应。属于这类干扰的因素有:试液的粘度、溶剂的蒸汽压、雾化气体的压力等。物理干扰是非选择性干扰,对试样各元素的影响基本是相似的。 配制与被测试样相似的标准样。

原子吸收分析中四大干扰的原因和消除办法

定义:试样在转移、蒸发过程中物理因素变化引起的干扰效应,主要影响试样喷入火焰的速度、进样量、雾化效率、原子化效率、雾滴大小等。因素:溶液的粘度、表面张力、密度、溶剂的蒸汽压和雾化气体的压力等。特点:物理干扰是非选择性干扰,对各种元素影响基本相同。消除方法:1) 配置相似组成的标准样品,采用标准加入法

原子吸收分析中四大干扰的原因和消除办法

定义:试样在转移、蒸发过程中物理因素变化引起的干扰效应,主要影响试样喷入火焰的速度、进样量、雾化效率、原子化效率、雾滴大小等。因素:溶液的粘度、表面张力、密度、溶剂的蒸汽压和雾化气体的压力等。特点:物理干扰是非选择性干扰,对各种元素影响基本相同。消除方法:1)  配置相似组成的标准样品,采用标准加入

原子吸收光谱分析中的干扰及其解决方法

  ▲ 物理干扰:来自样品的流体特性:如黏度、表面张力等  来源:样品的流体特性,如黏度、表面张力等  解决方法:  火焰:加大稀释倍数 (10~50倍)  火焰法测定有机溶剂灵敏度大于无机水溶液(2 ~2.5倍)。有机溶液密度、黏度和表面张力一般较无机酸小,样品提升速率和雾化效率都更大。  石墨炉

原子吸收光谱法背景吸收干扰和消除方法

背景是一种非原子吸收现象,多数人认为主要来自:(1)光散射(微固体颗粒引起) 火焰中的气溶胶固体微粒存在,会使入射光发生散射,产生高于真实值的假吸收,使结果偏高。(2)分子吸收 分子吸收是指在原子化过程中生成的气体分子、氧化物及盐类分子对辐第三射吸收而引起的干扰,包括火焰的成分,如OH、CH、NH、

火焰原子吸收光谱仪干扰消除法

      摘要:火焰原子吸收光谱法火焰原子吸收光谱法的特点:灵敏度高、抗干扰能力强、精密度高、选择性好、仪器简单、操作方便。      1、火焰原子吸收光谱仪zui佳条件的选择      A 吸收波长的选择        B 原子化工作条件的选择        a 空心阴极灯工作条件的选择(包括预

火焰原子吸收光谱仪干扰消除法

1、火焰原子吸收光谱仪条件的选择  A吸收波长的选择B原子化工作条件的选择a空心阴极灯工作条件的选择(包括预热时间、工作电流)b火焰燃烧器操作条件的选择(试液提升量、火焰类型、燃烧器的高度)c石墨炉操作条件的选择(惰性气体、原子化温度)C光谱通带的选择D检测器光电倍增管工作条件的选择 2、.火焰原子

火焰原子吸收光谱仪干扰消除法

   1、火焰原子吸收光谱仪最佳条件的选择   A 吸收波长的选择   B 原子化工作条件的选择   a 空心阴极灯工作条件的选择(包括预热时间、工作电流)   b 火焰燃烧器操作条件的选择(试液提升量、火焰类型、燃烧器的高度)   c 石墨炉最佳操作条件的选择(惰性气体、最佳原

火焰原子吸收光谱仪干扰消除法

1、火焰原子吸收光谱仪最佳条件的选择  A吸收波长的选择B原子化工作条件的选择a空心阴极灯工作条件的选择(包括预热时间、工作电流)b火焰燃烧器操作条件的选择(试液提升量、火焰类型、燃烧器的高度)c石墨炉最佳操作条件的选择(惰性气体、zui佳原子化温度)C光谱通带的选择D检测器光电倍增管工作条件的选择

火焰原子吸收光谱仪干扰消除法

1、火焰原子吸收光谱仪条件的选择  A吸收波长的选择B原子化工作条件的选择a空心阴极灯工作条件的选择(包括预热时间、工作电流)b火焰燃烧器操作条件的选择(试液提升量、火焰类型、燃烧器的高度)c石墨炉操作条件的选择(惰性气体、原子化温度)C光谱通带的选择D检测器光电倍增管工作条件的选择 2、.火焰原子

火焰原子吸收光谱仪干扰消除法

   1、火焰原子吸收光谱仪最佳条件的选择   A 吸收波长的选择   B 原子化工作条件的选择   a 空心阴极灯工作条件的选择(包括预热时间、工作电流)   b 火焰燃烧器操作条件的选择(试液提升量、火焰类型、燃烧器的高度)   c 石墨炉最佳操作条件的选择(惰性气体、最

消除原子吸收光谱法物理干扰的方法

物理干扰     物理干扰是指试液与标准溶液物理性质有差异而产生的干扰。如粘度、表面张力或溶液的密度等的变化,影响样品的雾化和气溶胶到达火焰传送等引起原子吸收强度的变化而引起的干扰。    消除办法:配制与被测试样组成相近的标准溶液或采用标准加入法。若试样溶液的浓度高,还可采用稀释法。

原子吸收分析干扰的原因和消除办法是什么

  定义:试样在转移、蒸发过程中物理因素变化引起的干扰效应,主要影响试样喷入火焰的速度、进样量、雾化效率、原子化效率、雾滴大小等。  因素:溶液的粘度、表面张力、密度、溶剂的蒸汽压和雾化气体的压力等。  特点:物理干扰是非选择性干扰,对各种元素影响基本相同。  消除方法:  1) 配置相似组成的标准

实验室光谱仪器原子吸收的干扰分类及消除办法

    原子吸收光谱分析的干扰通常有5种类型:化学干扰、物理干扰、电离干扰、光谱干扰及背景干扰等。(1)化学干扰化学干扰是原子吸收光谱分析中经常遇到的。产生化学干扰的主要原因是被测元素形成稳定或难熔的化合物不能完全离解出来所致。它又分为阳离子干扰和阴离子干扰。在阳离子干扰中,有很大一部分是属于被测元

火焰原子吸收法测定钠钾含量的干扰因素及消除办法

干扰及消除在高温火焰中,钾和钠易发生电离而产生电离干扰。可在分析试样中加入一定量更易电离的铯盐1000~2000 mg/L,作消电离剂予以消除。由于铯盐难以购得纯品,亦可用锶盐代替。无机酸对钾和钠的测定有影响,硝酸大于8%,硫酸大于2%时,吸光度均偏低,盐酸和高氯酸随酸量增加使吸光度明显下降,因此应

COD实验中的干扰及消除

COD实验中的干扰及消除氯离子是主要的干扰成分,水样中含有氯离子会使测定结果偏高,出厂标配的C1试剂可以掩蔽1000mg/L以下的氯离子干扰,大于1000mg/L的氯离子含量,可稀释后再测定;在600nm±20nm 处测试时,Mn(Ⅲ)、Mn(Ⅵ)或Mn(Ⅶ)形成红色物质,会引起正偏差,其500mg

原子吸收光谱分析中有哪些干扰

原子吸收光谱分析中的干扰大体可分为两类:第一类是非光谱干扰,包括电离干扰、物理干扰和化学干扰等,这些干扰作用与火焰光度学的物理、化学过程密切相关;第二类是光谱干扰,包括光谱干扰和背景吸收,它引起待测元素的吸收强度发生变化,导致测量误差.原子吸收光谱分析中最普遍的干扰是化学干扰,化学干扰是原子吸收光谱

原子吸收光谱分析中有哪些干扰

原子吸收光谱分析中的干扰大体可分为两类:第一类是非光谱干扰,包括电离干扰、物理干扰和化学干扰等,这些干扰作用与火焰光度学的物理、化学过程密切相关;第二类是光谱干扰,包括光谱干扰和背景吸收,它引起待测元素的吸收强度发生变化,导致测量误差.原子吸收光谱分析中最普遍的干扰是化学干扰,化学干扰是原子吸收光谱

原子吸收光谱分析中有哪些干扰

原子吸收光谱分析中的干扰大体可分为两类:第一类是非光谱干扰,包括电离干扰、物理干扰和化学干扰等,这些干扰作用与火焰光度学的物理、化学过程密切相关;第二类是光谱干扰,包括光谱干扰和背景吸收,它引起待测元素的吸收强度发生变化,导致测量误差.原子吸收光谱分析中最普遍的干扰是化学干扰,化学干扰是原子吸收光谱

原子吸收光谱分析的干扰有哪些

原子吸收光谱是分析化学领域中一种极其重要的分析方法,已广泛用于冶金工业.吸收原子吸收光谱法是利用被测元素的基态原子特征辐射线的吸收程度进行定量分析的方法.既可进行某些常量组分测定,又能进行ppm、ppb级微量测定,可进行钢铁中低含量的Cr、Ni、Cu、Mn、Mo、Ca、Mg、Als、Cd、Pb、Ad

原子吸收光谱分析的干扰有哪些

原子吸收光谱是分析化学领域中一种极其重要的分析方法,已广泛用于冶金工业.吸收原子吸收光谱法是利用被测元素的基态原子特征辐射线的吸收程度进行定量分析的方法.既可进行某些常量组分测定,又能进行ppm、ppb级微量测定,可进行钢铁中低含量的Cr、Ni、Cu、Mn、Mo、Ca、Mg、Als、Cd、Pb、Ad

原子吸收分光光度法光谱和电离干扰及消除

  一. 光谱干扰   1. 在测定波长附近有单色器不能分离的待测元素的邻近线 ——减小狭缝宽度   2. 灯内有单色器不能分离的非待测元素的辐射 ——高纯元素灯   3. 待测元素分析线可能与共存元素吸收线十分接近——另选分析线或化学分离  二. 电离干扰  待测元素在高温原子化过程中因电离作用而