转座子Tol2的转座机制与转座优势详述(一)

Tol2转座子提及转基因,大家首先映入脑海的是什么呢?转基因大豆?玉米?食用油?(对于那些一个都想不到的孩纸们,小编我只想哭晕在厕所)名词很熟悉,各大超市随处可见,可何为转基因,如何得到转基因产品?今天小编简单来跟大家聊一聊。所谓转基因,顾名思义,就是外源基因整合进入宿主基因组,目前哺乳动物系统最常用的转基因技术主要包括Sleeping beauty(SB),PiggyBac(PB)以及Tol2转座子系列,然而,其中的“明星转座子”当属Tol2!1、Tol2转座机制Tol2转座子是Koga等人在日本青鳉鱼中发现,属于hAT转座子家族,全长4682bp,末端分别为17bp和19bp的反向重复序列,包含4个外显子(图1),编码蛋白含有649个氨基酸残基。Tol2作为一个自主的转座元件,自身可以编码转座酶,且迄今为止,是在脊椎动物中发现的唯一具有自主转座活性的转座子[1]。将转座酶编码区序列部分缺失, 但保留转座酶识别和结合区域序列,......阅读全文

-Nature等三篇论文发布SMRT测序技术新应用成果

  Pacific Biosciences公司近日风光无限,发布了新系统,带动股价大涨。同时,它的单分子实时(SMRT)测序技术也助力了多个植物和动物基因组的研究。这些成果近期发表在多个期刊上,展现了SMRT测序的独特魅力。  最新一期的《Nature》杂志发表了Oropetium thomaeum

单分子测序推动复杂动植物的研究

  Pacific Biosciences公司近日风光无限,发布了新系统,带动股价大涨。同时,它的单分子实时(SMRT)测序技术也助力了多个植物和动物基因组的研究。这些成果近期发表在多个期刊上,展现了SMRT测序的独特魅力。  最新一期的《Nature》杂志发表了Oropetium thomaeum

科学家测序动物界最大基因组

据最新一期《自然》杂志报道,德国康斯坦茨大学和维尔茨堡大学领导的国际研究团队,对动物界最大基因组的拥有者——肺鱼进行了基因组测序。肺鱼基因组约为人类基因组大小的30倍。测序数据有望揭示当今陆地脊椎动物的鱼类祖先如何成功登陆的奥秘。泥盆纪时期(约4.2亿至3.6亿年前),一种具有强健胸鳍和肺的肉鳍鱼类

我国学者阐述CBL和CIPK基因家族互作产物间剂量平衡策略

  重复基因可通过全基因组加倍、串联重复、逆转录转座等机制形成,为生物新功能和新性状的产生提供了原始遗传材料,通常被认为是进化的加速器。基因组加倍或多倍化,同时复制基因组中所有的基因,是重复基因的一个重要来源。多项研究表明,多倍化后重复基因的保留具有偏好性,且与基因的功能密切相关。特别是一些参与编码

跳跃基因或会威胁胎儿的卵细胞质量

  女性从出生以来,其机体中卵子的储备是非常有限的,因此确保卵子中遗传物质的质量就显得尤为重要了。近日,一项刊登在国际杂志Nature Communications上的研究报告中,来自卡内基科学研究所等机构的科学家们通过研究阐明了一种特殊机制,即利用这种机制,个体在出生前就能够尝试消除质量较差的卵细

详述肝癌介入治疗的优势

核心提示: 介入治疗在临床上使用的越来越多,很多癌症疾病通过介入治疗的效果也起到了绝佳的作用,肝癌介入治疗的效果到底如何,需要看患者治疗以后的个人情况。所以,具体的疗效需要根据患者的表现来进行分析。        肝癌介入治疗是临床上经常会治疗的方法,那么这种治疗方法到底有没有

【人民日报海外版】中国科学家揭开人类胚胎奥秘

  记者近日从中国科学院获悉,该院北京基因组所与国内多家科研机构合作,在国际上首次揭示了人类胚胎进行有序基因表达、发育进化的奥秘。研究成果于3月9日发表于国际顶级学术期刊《细胞》上。  人类的生命从受精卵开始,一个受精卵如何发育成一个含有200多种细胞类型、36个重要器官的复杂有机体,是生命科学最大

中科院Cell-Res发表非编码RNA研究新成果

  来自中科院上海生命科学研究院的研究人员近日在新研究中证实,在精子发生后期粗线期piRNAs导致了大量的mRNA消失。这一研究发现发表在5月2日的《细胞研究》(Cell Research)杂志上。  中科院上海生命科学学院的刘默芳(Mo-Fang Liu)研究员是这篇论文的通讯作者,其研究方向是非

科学家初次证实脑细胞频繁基因重组

  由英国爱丁堡大学、日本理化学研究所等机构组成的一个国际研究小组发现,人类脑细胞会高频度地进行基因重组,脑细胞之间的基因各不相同。   科学家早前发现,在人类的细胞中,与遗传相关的细胞存在遗传基因重组现象。此次国际研究小组的发现首次证实了人类脑细胞也同样存在基因重组现象。   这

Science重磅:全新mRNA递送SEND,开辟分子疗法递送新方法

  2020 年初,新冠疫情肆虐全球,各国药企均大力投入疫苗研发,希望及时研发出有效疫苗以阻止疫情扩散,这也让原本还远离大众视线的 RNA 疗法,广为人知。  相比于传统疫苗,RNA 疫苗仿佛是专门为新冠疫情准备的。美国疫苗生产企业 Moderna 在得到新冠病毒基因组序列后,仅用了 4 天,就获得

华南植物园关于植物DNA甲基化的调控研究获进展

  DNA甲基化是表观遗传修饰的重要组成部分,可以通过改变染色质的结构、DNA的稳定性以及DNA和蛋白质的结合程度调控基因表达。在植物DNA甲基化的建立和维持过程中,植物特有的RNA聚合酶V(Pol V)通过转录出的非编码RNA招募一系列下游因子以实现对DNA的甲基化。目前,以Pol V为核心的DN

我国研究团队解析植物中独特的双链RNA合成机制

  转座子(transposon)最早由美国遗传学家Barbara McClintock在玉米中发现,在细菌、病毒以及真核生物的基因组中广泛分布。转座子类似内源性病毒,能够在宿主基因组中“复制和粘贴”自己的DNA,以达到其自我“繁殖”的目的。活跃的转座子对基因组的稳定构成严重威胁,高等生物通过对转座

科学家发现高等真核生物中DNA新修饰方式

  DNA甲基化作为重要表观遗传机制调控基因的表达,从而影响一系列的生物学过程,如细胞命运决定、发育和组织、器官的稳态维持。医学上,DNA甲基化失调与人类疾病密切相关,如肿瘤。DNA甲基化以多种修饰方式[5-methylcytosine (5mC), N6-methyladenine (6mA) 和

Cell:“垃圾”RNA不垃圾,帮助细胞应对压力

  非编码RNA通常因不能编码蛋白质的RNA而被称为“垃圾RNA” ,包括小RNA以及长链RNA。近期,来自于哈佛大学医学院附属麻省总医院(MGH)的研究团队却发现,“垃圾”RNA并不垃圾,它通过与一种负责基因沉默的酶互作,确保应激基因的表达,促使细胞对抗胁迫。  研究人员发现的“垃圾”RNA是B2

明星抑癌基因p53如何抑癌?

  p53为肿瘤抑制蛋白(也称为p53蛋白或p53肿瘤蛋白),属于最早发现的肿瘤抑制基因(或抑癌基因)之一。p53蛋白能调节细胞周期和避免细胞癌变发生。因此,p53蛋白被称为基因组守护者。总而言之,其角色为保持基因组的稳定性,避免突变发生。在遏制肿瘤细胞生长、DNA修复、以及细胞程序化死亡等方面扮演

灵长类动物非病毒基因传递系统出炉

长期以来,由于病毒基因传递方法的局限性,非人类灵长类动物的基因工程进展受限。现在,日本科学家采用了一种非病毒基因传递系统,成功将人工基因引入了与人类亲缘关系较近的食蟹猴体内。该成果被认为是基因工程领域的里程碑,相关研究发表在最新一期《自然·通讯》杂志上。小型动物模型如小鼠,在模拟人类疾病复杂性方面存

关于脱氧核糖核酸重复顺序的研究史介绍

  脱氧核糖核酸重复顺序的研究史,美国学者R·J·布里顿于1968年提出突变复制假说,认为用进化的时间表来衡量,某种DNA顺序的倍增是一种突发的事件,重复顺序传给后代,并可能通过自然选择在种群中扩散。美国学者G·P·史密斯在1973年提出交换固定假说,它的基本前提是在姊妹染色单体间的不对等交换。他通

科学家测序动物界最大基因组

科技日报北京8月15日电(记者张佳欣)据最新一期《自然》杂志报道,德国康斯坦茨大学和维尔茨堡大学领导的国际研究团队,对动物界最大基因组的拥有者——肺鱼进行了基因组测序。肺鱼基因组约为人类基因组大小的30倍。测序数据有望揭示当今陆地脊椎动物的鱼类祖先如何成功登陆的奥秘。泥盆纪时期(约4.2亿至3.6亿

首个山羊基因组图谱在《自然•生物技术》杂志发表

  2012年12月24日,由中国科学院昆明动物研究所、深圳华大基因研究院等单位合作完成的首个山羊全基因组图谱在《自然•生物技术》(Nature Biotechnology)杂志在线发表。本研究采用新一代测序技术(NGS)与全基因组酶切图谱(Whole-genome mapping)技术相结

Cell-Research:一类全新植物异染色质蛋白

  研究人员发现一类植物特有的新型组蛋白甲基化阅读器ADCP1,并确定其为动物HP1(Heterochromatin Protein 1,异染色质蛋白1)功能同源蛋白,揭示出其在植物异染色质维持和转座子元件沉默中的作用,彰显了不同生命界中表观机制的复杂性和保守性。  2018年11月13日,清华-北

最新Science:全新mRNA递送平台SEND,开辟分子疗法新方法-​

  2020 年初,新冠疫情肆虐全球,各国药企均大力投入疫苗研发,希望及时研发出有效疫苗以阻止疫情扩散,这也让原本还远离大众视线的 RNA 疗法,广为人知。  相比于传统疫苗,RNA 疫苗仿佛是专门为新冠疫情准备的。美国疫苗生产企业 Moderna 在得到新冠病毒基因组序列后,仅用了 4 天,就获得

河南大学最新文章解析玉米遗传突变

   报道:干旱胁迫严重影响作物产量, 其所造成的损失几乎是其他自然灾害的总和。来自河南大学生命科学学院的研究人员近期利用自主性Mutator转座子玉米材料与玉米自交系材料杂交,获得了F1插入诱变群体, F1自交得F2群体,并进行了深入的突变体分析鉴定,为深入开展玉米抗旱育种提供了实验材料。

诺贝尔奖得主Cell揭示重要的“垃圾”DNA

  来自斯坦福大学、犹他大学和清华大学等处的研究人员,发现了一类丰富的非编码DNA可以防止线虫生殖细胞中随机的基因沉默。他们的研究论文发布在6月30日的《细胞》(Cell)杂志上。  美国著名遗传学和分子生物学家、2006年诺贝尔生理学或医学奖得主、斯坦福大学的Andrew Z Fire教授,以及犹

萝卜基因组组装与抽薹性状遗传调控机理解析研究新进展

  近日,南京农业大学作物遗传与种质创新利用全国重点实验室、园艺学院萝卜遗传育种团队在植物学领域权威期刊Plant Biotechnology Journal 在线发表了题为“A chromosome-level genome assembly of radish (Raphanus sativus

农业科学院牧医所揭秘蒙古羊肥尾表型的遗传进化机制

  近日,中国农业科学院北京畜牧兽医研究所肉羊遗传育种创新团队联合中国科学院上海生命科学研究院等单位在绵羊肥尾性状功能解析方面取得重要进展,揭示了中国地方绵羊品种在适应性驯化过程中,如何通过基因组层面的选择和重组来影响绵羊尾型的遗传进化机制。该研究完善了绵羊尾脂形成的分子生物学机制,同时为绵羊分子育

谢晓亮教授Science报道新型单细胞基因组线性扩增法

  谢晓亮教授在4月14日的Science上发表文章报道了实验室的最新研究:一种新型的单细胞基因组线性扩增的方法——转座插入(LIANTI,Linear Amplification with Transposon Insertion)。LIANTI法在检测拷贝数目变异和单核苷酸变异上的准确度都优于以

植物DNA甲基化的调控研究获重要进展

  近日,中国科学院华南植物园农业与生物技术中心研究员陈琛、副研究员王昌虎团队与合作者,在国家自然科学基金面上项目和青年项目、广州市科技计划项目的资助下,对植物DNA甲基化的调控研究取得重要进展。相关成果发表于《自然-通讯》(Nature Communications)。  DNA甲基化是表观遗传修

植物DNA甲基化的调控研究获重要进展

近日,中国科学院华南植物园农业与生物技术中心研究员陈琛、副研究员王昌虎团队与合作者,在国家自然科学基金面上项目和青年项目、广州市科技计划项目的资助下,对植物DNA甲基化的调控研究取得重要进展。相关成果发表于《自然-通讯》(Nature Communications)。DNA甲基化是表观遗传修饰中的一

创造新的记录!西湖大学1天2篇Cell

  叶绿体蛋白在ATP酶马达的驱动下,通过叶绿体外膜(TOC)转座子和叶绿体内膜(TIC)超复合体的转座子导入。Ycf2-FtsHi复合体已被确定为叶绿体进口马达。然而,其在前蛋白转运过程中与TIC复合物的组装和合作尚不清楚。  2024年8月27日,西湖大学闫浈团队在Cell 在线发表题为“Str

美NCI科学家撤销一篇PNAS论文

  美国国家癌症研究所(NCI)的研究人员近日撤回了一篇RNAi方面的。这篇论文于2009年发表在美国《国家科学院院刊》(PNAS)上,曾鉴定出一种RNA依赖的RNA聚合酶(RdRP),它在果蝇的RNAi中发挥作用。  据论文作者、NCI的研究人员Concetta Lipardi和报道,果