活体成像技术在血流动力学的应用

光学活体成像技术主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。可见光体内成像通过对同一组实验对象在不同时间点进行记录,跟踪同一观察目标(标记细胞及基因)的移动及变化,所得的数据更加真实可信。因其操作极其简单、所得结果直观、灵敏度高等特点, 近年来,已广泛应用于生命科学、医学研究及药物开发等方面。韩国庆熙大学的Hye-Min Kang等研究人员利用VISQUE活体成像技术,研究了不同年龄阶段小鼠脑部动脉血管结构及血流的变化。首先,研究人员使用吲哚氰绿(ICG)荧光示踪剂尾静脉给予小鼠注射后,利用实时成像模式,曝光时间160ms,间隔2min,一共拍摄50张实时图像,通过选取右侧半脑同区域动力学的常规指标Trising、Imax、B......阅读全文

活体动物体内成像技术文献3

1.  Systemic tumor targeting and killing by Sindbis viral vectorsNATURE BIOTECHNOLOGY 22 (1): 70-77, January 2004本文依据Sindbis病毒对癌细胞表面超量表达的LAMR的识别的机理,以荧

活体动物体内成像技术文献2

12. 药物对蛋白质相互作用的影响Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living anima

Science子刊:活体细胞新成像技术

  通常,高分辨率成像前细胞必须经过切片切块、脱水、涂抹有毒染料或嵌入树脂等处理操作,观察时细胞肯定早就死了。尽管在成像方面科学家们已经取得了很大突破,但目前没有一种方法能兼得高分辨率、高灵敏度和活体亚细胞结构成像。  荧光显微镜和共聚焦显微镜虽然能监测细胞内生物相互作用,但其空间分辨率很低,而且需

激光散斑技术在微循环血流监测中的应用

基本介绍有机体的生命过程是物质、信息和能量三者有组织、有秩序的活动,具体表现为生物个体内各器官、组织细胞之间,物质、信息和能量的传递。在这个过程中,由微动脉、微静脉、毛细血管和动静脉吻合支组成的微循环起着至关重要的作用,直接给细胞供血、供氧、供能量及有关的营养物质,同时还排出对人体有害的代谢产物,是

Celigo成像分析技术在细胞增殖中的应用

细胞增殖是肿瘤研究的必备实验之一。最简单直接的检测细胞增殖的方法就是在不同时间点进行细胞计数,但是在96孔板甚至384孔板的实验设置下,这无疑是难以操作的。于是,研究者们更倾向于用间接方法研究细胞增殖,比如基于线粒体内脱氢酶还原能力的MTT, MTS, CCK-8法,还有基于胞内ATP水平的Ce

显微成像技术在干细胞研究中的应用

干细胞涉及到个体发育、器官移植、延缓衰老、癌症治疗等方方面面。单个的干细胞是如何分裂、分化成新的细胞、组织或器官呢?在成体中,干细胞又是如何完成细胞修复更新的使命呢?在下面的文章中,我们将介绍如何借助共聚焦、双光子等显微成像分析技术一一解决在干细胞研究中的这些问题。激光共聚焦扫描显微镜可以精确可控的

活体成像中荧光染料的选择与成像

Cy5.5(Ex/Em:678/701 nm)和Cy7(Ex/Em:749/776 nm)是对分子标记的最优选择之一;DiD(Ex/Em:644/663 nm)、DiR(Ex/Em:748/780)染料则常用于活体成像实验中对细胞进行标记。  一、Cy5.5 、Cy7 Cy5.5 、Cy7避开了可见

Science:成像技术活体监测HIV的扩散过程

  逆转录病毒(比如HIV)如何在宿主中进行扩散,目前科学家们并不清楚,近日,来自耶鲁大学的研究人员通过研究设计了一种方法,可以在活的有机体中实现对HIV扩散过程的观察,相关研究刊登在了国际杂志Science上,文章中研究者成功观察到了HIV如何到达并且在小鼠淋巴结中实现扩散的过程。  研究者Wal

活体生物发光成像技术的最新进展

  活体动物体内光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等

活体生物发光成像技术的最新进展

活体动物体内光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进

小动物活体成像

小动物活体成像主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。利用一套非常灵敏的光学检测仪器,让研究人员能够直

小动物活体成像

小动物活体成像   主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。利用一套非常灵敏的光学检测仪器,

活体动物体内生物发光和荧光成像技术基础原理与应用三

4.干细胞及免疫学用荧光素酶标记干细胞有以下几种方法:一种是标记组成性表达的基因,做成转基因动物,干细胞就被标记了,若干细胞移植到另外动物体内,可以用活体生物发光成像技术示踪干细胞在体内的增殖、分化及迁徙的过程;另外一种方法是用慢病毒直接标记干细胞后,移植到体内观测其增殖、分化及迁徙过程,研究其修复

活体动物体内生物发光和荧光成像技术基础原理与应用六

 (二)荧光成像技术优点在活体动物可见光成像技术中,相对于生物发光成像技术,荧光成像技术的优势主要表现在:1. 荧光染料、蛋白标记能力强荧光标记物种类繁多,包括荧光蛋白、荧光分子、量子点等,可以与基因、多肽、抗体等生物分子标记,作为分子探针使用范围广。同时,不同的荧光蛋白或染料还可对样本进行多重标记

活体动物体内生物发光和荧光成像技术基础原理与应用七

(二) 实验操作流程1.  细胞标记或动物标记等进行生物发光实验,首先根据实验内容的不同,用荧光素酶基因标记肿瘤细胞、干细胞、病毒、药物载体或动物,或者用Lux操纵子标记细菌。用荧光素酶基因标记可通过质粒、慢病毒或逆转录病毒等方法进行。如果进行荧光实验,就用GFP、EGFP或RFP标记肿瘤细胞、干细

活体动物体内生物发光和荧光成像技术基础原理与应用五

3. 药学研究荧光成像在药物制剂学研究,尤其是药物靶向性研究,药物载体研究中有巨大优势。有关专家正在设计用合适的荧光染料标记小分子药物,观察药物在动物体内的特异性分布和代谢情况,尤其是中药研究方面。 应用透射仪从样本底部激发光源,可以提高活体荧光成像的灵敏度和检测的深度。图11-6是应用NIR荧光染

活体动物体内生物发光和荧光成像技术基础原理与应用一

活体动物体内生物发光和荧光成像技术基础原理与应用简介 文章目录:一、活体生物发光成像技术二、活体动物荧光成像技术三、生物发光成像与荧光成像的比较四、活体动物可见光成像仪器原理与操作流程活体动物体内成像技术是指应用影像学方法,对活体状态下的生物过程进行组织、细胞和分子水平的定性和定量研究的技术。活体动

活体动物体内生物发光和荧光成像技术基础原理与应用二

(二)活体生物发光成像技术应用领域活体生物发光成像技术是一项在某些领域有不可替代优势的技术,比如肿瘤转移研究、药物开发、基因治疗、干细胞示踪等方面。1.肿瘤学活体生物发光成像技术能够让研究人员能够直接快速的测量各种癌症模型中肿瘤的生长、转移以及对药物的反应。其特点是极高的灵敏度使微小的肿瘤病灶(少到

活体动物体内生物发光和荧光成像技术基础原理与应用四

二、活体动物荧光成像技术 (一)技术原理1.标记原理活体荧光成像技术主要有三种标记方法。(1)荧光蛋白标记:荧光蛋白适用于标记细胞、病毒、基因等,通常使用的是GFP、EGFP、RFP(DsRed)等;(2)荧光染料标记:荧光染料标记和体外标记方法相同,常用的有Cy3、Cy5、Cy5.5及Cy7,可以

Celigo成像分析技术在细胞杀伤中的应用(二)

这么好的方法当然需要一个强大的检测仪器来支撑 – Celigo成像细胞定量分析仪:● 明场+四色荧光● 全孔成像,图片清晰,适用于6-1536孔板● 定量分析全孔细胞数目● 软件自带流式设门分析功能● 高速同步成像和分析,15分钟内完成一块96孔板的免疫杀伤检测现在小编就以NK细胞的ADCC(抗体依

Celigo成像分析技术在细胞杀伤中的应用(一)

2018年的诺贝尔生理学或医学奖授予了两位免疫学家,分别是美国的James P Allison和日本的本庶佑教授,以表彰他们的原创发现推动了免疫学研究的进程,促使了癌症治疗领域革命性新药物的面世。如今炙手可热的PD-1, CAR-T,TCR-T技术等都要归功于这一伟大发现及其临床应用。如果你的工作也

关于彩色多普勒血流成像的简介

  1842年奥地利物理学家多普勒首先提出一种物理现象,即振动源与接收器之间存在运动时,所接收到的振动频率因运动而发生改变。现在超声检查应用的超声探头就是振动源,被检查人的心脏及血流就是接收器,两者之间存在着振动频率的改变,被称之为“多普勒”效应。在这个基础上科学家以脉冲多普勒技术为基础,用运动目标

延迟荧光技术及其在活体浮游植物测量中的应用(二)

结合其他水文、气象与光学等水体生态因子,分析浮游植物的季节变化模式,作为动态变化环境的函数。最终建立随季节而变化的生态因子和浮游植物生长之间的函数关系,可以充分地模拟各种水华的过程,精确探测藻类和水华的形成和消亡,从而达到预防水华发生的目的[1]。3 延迟荧光技术应用案例:3.1 匈牙利巴拉顿湖在线

延迟荧光技术及其在活体浮游植物测量中的应用(一)

摘要:本文介绍了一种活体浮游植物在线监测技术——延迟荧光测量技术及基于延迟荧光技术的DF藻类延迟荧光测量系统。活体藻类监测技术通过在线监测藻类的延迟荧光,自动记录活的浮游植物的生物量和组成,适用于浮游植物的自动在线持续监测。结合其他系统所测得的生态因子参数,分析浮游植物的季节变化模式,作为动态变化环

从活体成像技术看温度对CCD的重要性

活体成像技术的出现,使得对分子及细胞生物学的研究不再只是像原来一样只局限于在体外进行,研究人员通过活体成像技术完全可以清晰的观察到体内的基因表达和细胞活动,因此,这项技术被广泛地应用于医学以及生物学的研究领域。而这个活体成像技术最早是美国斯坦福大学的科学家研究发现的,他们通过在密闭性好的暗箱中采用背

小动物活体成像技术的原理及操作方法

小动物活体成像 主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。利用一套非常灵敏的光学检测仪器,让研究人员能够

我国学者在活体化学发光成像方面取得进展

图 基于Schaap's dioxetane的长波长化学发光分子探针的设计及用于活体分子的高分辨化学发光成像  在国家自然科学基金项目(批准号:21874024、U21A20377)资助下,北京化工大学宋继彬教授团队利用分子内化学发光共振能量转移的方法,发展了长波长(>950 nm)化学发光

活体介观显微成像主题论坛在清华大学举行

4月19日,由清华大学成像与智能技术实验室主办的“新质生产力推动颠覆性研究——活体介观显微成像”主题论坛在清华大学举行。论坛重点围绕神经科学、免疫学、肿瘤科学等基础学科的活体需求与介观显微成像技术的研究进展,把脉科研与产业创新发展趋势和方向。清华大学副校长郑力、清华大学信息学院院长戴琼海院士、清华大

精诺真活体成像系统

1、【仪器名称】:精诺真活体成像系统。2、【仪器型号】:IVIS 200。3、【生产厂家】:美国精诺真(Xenogen,Inc.)公司(龙脉得生物技术有限公司代理)。4、【检测适用范围】:用于提供LPTA动物模型靶基因在体内的实时表达和对候选药物的准确反应,还可以用来评估候选药物和其他化合物的毒性。

精诺真活体成像系统

1、【仪器名称】:精诺真活体成像系统。 2、【仪器型号】:IVIS 200。 3、【生产厂家】:美国精诺真(Xenogen,Inc.)公司(龙脉得生物技术有限公司代理)。 4、【检测适用范围】:用于提供LPTA动物模型靶基因在体内的实时表达和对候选药物的准确反应,还可以用来评估候选药物和其他化