活体动物体内生物发光和荧光成像技术基础原理与应用二
(二)活体生物发光成像技术应用领域活体生物发光成像技术是一项在某些领域有不可替代优势的技术,比如肿瘤转移研究、药物开发、基因治疗、干细胞示踪等方面。1.肿瘤学活体生物发光成像技术能够让研究人员能够直接快速的测量各种癌症模型中肿瘤的生长、转移以及对药物的反应。其特点是极高的灵敏度使微小的肿瘤病灶(少到几百个细胞)也可以被检测到,比传统方法的灵敏度大大提高了;非常适合于肿瘤体内生长的定量分析;避免由于宰杀老鼠而造成的组间差异;节省动物成本。由于以上特点,使基于转移模型、原位模型、自发肿瘤模型等方面的肿瘤学研究得到发展。建立肿瘤转移模型,可以观察肿瘤转移情况,进一步探讨肿瘤转移的机制;可进行原位接种,观察原位以及原位转移模型,使肿瘤学研究更接近肿瘤临床发病的微观环境;通过建立自发肿瘤模型,可以观察肿瘤发生机理。(图11-1)。 图11-1 肿瘤的长期检测,左图分别是7天,14天,30天成像。来自中国军事医学科学院 ......阅读全文
小动物活体成像
小动物活体成像 主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。利用一套非常灵敏的光学检测仪器,
小动物活体成像
小动物活体成像主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。利用一套非常灵敏的光学检测仪器,让研究人员能够直
小动物活体成像技术
1、背景和原理1999年,美国哈佛大学Weissleder等人提出了分子影像学(molecular imaging)的概念——应用影像学方法,对活体状态下的生物过程进行细胞和分子水平的定性和定量研究。传统成像大多依赖于肉眼可见的身体、生理和代谢过程在疾病状态下的变化,而不是了解疾病的特异性分子事件。
要不要动物活体实验
我在带学生做动物实验.每个纲都有一种代表动物.虽然是老师,但我的心中很沉重.由于人类自身的需要,有时候不得不利用动物做活体实验或活体解剖.从某个角度来说,这是残忍的,但是为了人类自身,不得不做.一番悲天悯人后,不得不承认,人类的医学、药物学和生物学等诸多学科的发展离不开活体实验.这个残酷的现实似
小动物活体成像原理
体动物体内光学成像主要采用生物发光与荧光两种技术。生物发光是用荧光素酶基因(Luciferase)标记细胞或 DNA,而荧光技术则采用绿色荧光蛋白、红色荧光蛋白等荧光报告基因和 FITC、Cy5、Cy7 等荧光素及量子点 (quantumdot,QD) 进行标记。小动物活体成像技术是采用高灵敏度制冷
小动物活体成像原理
体动物体内光学成像主要采用生物发光与荧光两种技术。生物发光是用荧光素酶基因(Luciferase)标记细胞或 DNA,而荧光技术则采用绿色荧光蛋白、红色荧光蛋白等荧光报告基因和 FITC、Cy5、Cy7 等荧光素及量子点 (quantumdot,QD) 进行标记。小动物活体成像技术是采用高灵敏度制冷
为什么要进行活体动物实验
我反对用进行动物实验。超级残忍。现在我们反对动物实验并不坚持立刻停止所有的实验,我们的要求只是,应当立即禁止目的不明确和非急需的动物实验,其余的研究领域应尽可能地利用不需要动物的替代方法进行实验。有很多实验都是追求一些好无意义的目的,对人类根本没有任何益处。或者只是想进一步证明已有的结论。又或者就根
小动物活体成像系统比较
分子影像产品的研究与发展,是伴随着分子影像成像理论和成像算法的发展而逐步发展的。在荧光标记的分子成像方面,目前世界上仅有少数实验室研制成功可以对小动物进行跟踪性在体荧光断层分子影像的系统,并接连在Nature/Science上发表一系列突破性研究进展。 近年来,国外某些公司改进了现有的体外荧光成像
小动物活体成像系统怎么选择
小动物活体成像技术有很多,大概分为两大类:一类是用来获取解剖学结构信息的技术,可以获得物理结构,骨胳、器官位置大小等,比如说CT,核磁MRI,或者是超声;另一类是功能学成像技术,是用来获取功能学信息的,比如说细胞功能,bio-marker功能,器官功能等等,目前最常用的功能学技术包括光学成像,使用放
动物活体光学成像的应用进展
随着对亚细胞结构和功能、分子生理和病理、细胞间和细胞内信号通路研究的深入,人类对疾病和对生命本质的认识不断被追朔到蛋白质、基因水平。在上个世纪发展起来的CT、MRI、PFT、超声等宏观影像技术已经远不能满足对活体环境内细微生命过程的探询。组织切片和免疫染色能够部分解释一些生物现象,但是需要研究对象与
动物活体成像系统的技术指标
动物活体成像系统是一种用于化学、生物学领域的医学科研仪器,于2016年01月25日启用。 技术指标 采用背照射、背部薄化科学一级CCD;CCD采用电制冷方式,工作温度达到绝对-90℃,温度可视化;CCD尺寸不小于1.3 x 1.3 cm;CCD有效像素数量不少于1024 x 1024;CCD
小动物活体成像技术概览(四)
成像设备主要应用领域优点缺点PET报告基因表达,小分子示踪高灵敏性,同位素自然替代靶分子,可进行定量移动研究需要回旋加速器或发生器,相对低的空间分辨率,辐射损害,价格昂贵SPECT报告基因表达,小分子示踪同时使用多种分子探针,能同时成像,适于用作临床成像系统相对较低的空间分辨率,辐射损害生物体之发光
小动物活体成像技术概览(二)
光在哺乳动物组织内传播时会被散射和吸收,光子遇到细胞膜和细胞质时会发生折射现象,而且不同类型的细胞和组织吸收光子的特性并不一样。在偏红光区域, 大量的光可以穿过组织和皮肤而被检测到。利用灵敏的活体成像系统最少可以看到皮下的500个细胞,当然,由于发光源在老鼠体内深度的不同可看到的最少细胞数是不同
小动物活体成像技术概览(一)
1. 背景和原理:1999年,美国哈佛大学Weissleder等人提出了分子影像学(molecular imaging)的概念——应用影像学方法,对活体状态下的生物过程进行细胞和分子水平的定性和定量研究。传统成像大多依赖于肉眼可见的身体、生理和代谢过程在疾病状态下的变化,而不是了解疾病的特异性分子事
小动物活体成像技术概览(三)
2-4超声成像此外,超声分子影像学是近几年超声医学在分子影像学方面的研究热点。它是利用超声微泡造影剂介导来发现疾病早期在细胞和分子水平的变化,有利于人们更早、更准确地诊断疾病。通过此种方式也可以在患病早期进行基因治疗、药物治疗等,以期在根本上治愈疾病。2-5CT成像CT成像是利用组织的密度不同造成对
活体动物体内成像技术文献
1. 细胞凋亡与白血病Activation of Apoptosis in Vivo by a Hydrocarbon-Stapled BH3 HelixSCIENCE 2004,305:1466-1470 通过对BCL-2蛋白家族BID的BH3结构域进行化学修饰,使其容易穿过细胞膜,在活体内研究其
小动物活体成像系统怎么选择
小动物活体成像技术有很多,大概分为两大类:一类是用来获取解剖学结构信息的技术,可以获得物理结构,骨胳、器官位置大小等,比如说CT,核磁MRI,或者是超声;另一类是功能学成像技术,是用来获取功能学信息的,比如说细胞功能,bio-marker功能,器官功能等等,目前最常用的功能学技术包括光学成像,使用放
如何选择小动物活体荧光成像系统
小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪
活体动物体内光学成像(八)
关于技术应用42. 可以用荧光素酶基因标记干细胞吗?如何标记? 可以,标记干细胞有几种方法。一种是标记组成性表达的基因,做成转基因小鼠,干细胞就被标记了,从此小鼠的骨髓取出造血干细胞,移植到另外一只小鼠的骨髓内,可以用该技术示踪造血干细胞在体内的增殖和分化及迁徙到全身的过程。另外一种方法是用慢病
活体动物体内光学成像(三)
(2) 免疫学与干细胞研究将荧光素酶标记的造血干细胞移植入脾及骨髓,可用于实时观测活体动物体内干细胞造血过程的早期事件及动力学变化。有研究表明,应用带有生物发光标记基因的小鼠淋巴细胞,检测放射及化学药物治疗的效果,寻找在肿瘤骨髓转移及抗肿瘤免疫治疗中复杂的细胞机制。应用可见光活体成像原理标记细胞,建
活体动物体内成像技术文献3
1. Systemic tumor targeting and killing by Sindbis viral vectorsNATURE BIOTECHNOLOGY 22 (1): 70-77, January 2004本文依据Sindbis病毒对癌细胞表面超量表达的LAMR的识别的机理,以荧
活体动物体内光学成像(六)
17. 标记好的细胞的荧光素酶是随机还是插入固定的位点? 插入的位点是随机的,但每一个构建好的细胞株我们都做过详细的分析,与其母细胞株进行详细的比较,证明荧光素酶的插入对细胞的各种特性(包括生长周期, 成瘤性等)没有造成影响。18. 能标记病毒吗?能标记病毒的某一个基因吗? 可以标记病毒,由于病毒在
如何选择小动物活体荧光成像系统
小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪
活体动物体内光学成像(一)
活体动物体内光学成像主要采用生物发光与荧光两种技术。生物发光是用荧光素酶基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cy5及Cy7等)进行标记。该技术最初是由美国斯坦福大学的科学家采用了世界上最优秀的高性能CCD研发与生产制造商Roper scientific公司最
活体动物体内光学成像(四)
3. 标记细菌(1) 细菌侵染研究可以用标记好的革兰氏阳性和阴性细菌侵染活体动物, 观测其在动物体内的繁殖部位、数量变化及对外界因素的反应。(2) 抗生素药物利用标记好的细菌在动物体内对药物的反应,医药公司和研究机构可用这种成像技术进行药物筛选和临床前动物实验研究。4. 基因表达和蛋白质相互作用(1
活体动物体内光学成像(七)
关于生物发光与荧光及其它技术的比较 34. 荧光检测与生物发光检测的优势与劣势比较如何? 荧光发光需要激发光,但生物体内很多物质在受到激发光激发后,也会发出荧光,产生的非特异性荧光会影响到检测灵敏度。特别是当发光细胞深藏于组织内部,则需要较高能量的激发光源,也就会产生很强的背景噪音。作为体内报告源
活体动物体内光学成像(十)
3. 关于CCD的“背部薄化、背照射”与“冷”的确切含义是什么?之所以叫冷CCD,是由于CCD的芯片温度下降到零下70℃或110℃,可以降低噪音,提高检测的灵敏度。Cryogenic 的制冷技术可以使CCD的温度达到-70℃到 -110℃,那样的温度可以使背照射冷CCD的暗电流减少到可忽略不
活体动物体内成像技术文献2
12. 药物对蛋白质相互作用的影响Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living anima
活体动物体内光学成像(二)
3. 实验过程 通过分子生物学克隆技术, 应用单克隆细胞技术的筛选,将荧光素酶的基因稳定整合到预期观察的细胞的染色体内,培养出能稳定表达荧光素酶蛋白的细胞株。典型的成像过程是:小鼠经过麻醉系统被麻醉后放入成像暗箱平台,软件控制平台的升降到一个合适的视野,自动开启照明灯拍摄第一次背景图。下一步,自动关
如何选择小动物活体荧光成像系统
小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪