实时无标3D成像系统创新纳米材料应用(一)

碳点(f-CDs)是一种尺寸小于10nm的分散的类球形荧光碳纳米颗粒。因其发光范围可调、双光子吸收截面大、光稳定性好、易于功能化、无毒和生物相容性好等优点,在生物成像和标记、分析检测,药物开发, 癌症纳米治疗, 光电转换以及催化等领域表现出良好的应用前景。这也使碳点成为半导体量子点、高分子纳米材料和有机荧光材料的极好代替物 。 但是如何研究这些材料是否会对细胞产生毒性,一直没有很好的验证方法,2017年2月暨南大学化学与材料学院杨培慧老师,借助Nanolive国际领先技术产品3D cell Explorer的实时无标记无损伤成像技术,成功在The Royal Society of Chemistry上发表文章;文章利用3D cell explorer 实时无损伤无标记成像方式快速分析红细胞与内皮细胞的粘附效果, 并验证了f-CDs 对细胞相互无影响,新颖独特的数据充分证明了CDs对细胞无毒性及荧光成......阅读全文

实时无标3D-成像系统创新纳米材料应用(一)

碳点(f-CDs)是一种尺寸小于10nm的分散的类球形荧光碳纳米颗粒。因其发光范围可调、双光子吸收截面大、光稳定性好、易于功能化、无毒和生物相容性好等优点,在生物成像和标记、分析检测,药物开发, 癌症纳米治疗, 光电转换以及催化等领域表现出良好的应用前景。这也使碳点成为半导体量子点、高分子纳米

实时无标3D-成像系统创新纳米材料应用(二)

3、3D cell explorer无标记成像系统观察红细胞与内皮细胞的粘附效果实验操作:1.内皮细胞用H2O2 处理进行损伤处理12h,MTT 检测IC 50 值为400 mM实验验证:Nanolive 无标记成像系统通断层扫描与全息成像技术,对细胞3D成像,3维图像360度旋转分析,观察到红细胞

Nanolive-3D-cell-exlporer实时无标3D-成像系统创新纳米材料

  碳点(f-CDs)是一种尺寸小于10nm的分散的类球形荧光碳纳米颗粒。因其发光范围可调、双光子吸收截面大、光稳定性好、易于功能化、无毒和生物相容性好等优点,在生物成像和标记、分析检测,药物开发, 癌症纳米治疗, 光电转换以及催化等领域表现出良好的应用前景。这也使碳点成为半导体量子点、高分子纳米材

Nanolive-3D-CX-巨噬细胞无标记实时3D成像助力免疫学研究

巨噬细胞几乎存在于所有组织中,属免疫细胞,有多种功能,是研究细胞吞噬、细胞免疫和分子免疫学的重要对象。它们有助于健康机体的各种过程,如发育、伤口愈合、感染和组织内平衡。可以根据环境的变化迅速改变它们的表型。巨噬细胞以其作为抗菌吞噬细胞的经典功能而闻名,但也通过抗原的表达来支持免疫功能。它们的研究应用

3D全息成像技术突破实时传送

  从《星球大战》开始,让身处不同地方的人出现在同一可活动的全息图中,就成为科幻的经典情节。但11月4日出版的英国《自然》杂志封面文章介绍的新成果,显示科学家们已发明出近乎实时传送水平的3D全息成像技术,即“全息网真”。《每日邮报》评论称该突破可使电视电影、电脑游戏、街头3D广告甚至远程医

Nanolive实时无标记断层扫描3D成像技术揭示病毒诱导的细..

Nanolive实时无标记断层扫描3D成像技术揭示病毒诱导的细胞病理反应机制细胞病变效应(CPE)是指病毒对组织培养细胞侵染后产生的细胞变性,是感染的标志。CPE可通过相差显微镜或荧光显微镜观察,但会产生光毒性,此次研究我们通过Nanolive数字全息断层显微术(DHTM)具有独特的最小干扰的方式揭

激光全息细胞成像系统HoloMonitor-M4在纳米材料中的应用

纳米技术在1959年首次由Richard P. Feynman提出。现在,纳米技术广泛应用于日常生活中,例如三星和苹果的最新款手机,其芯片大小为28nm。20世纪60年代,发现了一种半导体纳米线生长的方法,半导体纳米线通常1-10μm长,直径在100nm之下。近年来科学家开始注意到纳米阵列在

工业CT的3D成像系统的成像方法

  一种工业CT的3D成像方法和成像系统,包括相向设置的X射线发生器、弧形探测器、设置在同一条轴线上的*传送带和第二传送地,*传送带和第二传送带的相对端之间具有空隙,X射线发生器和弧形探测器以空隙处为圆心围绕*传送带和第二传送带转动设置。   X射线发生器包括X射线球管和束光器,束光器安装在X射线

工业CT的3D成像系统的成像方法

目前工业无损立体3D检测多采用类似医用CT的形式,物品放在传送装置上,线阵探测器和球管在物品的上下旋转一定角度(如2度)拍一幅二维X光片旋转一周后对拍摄的180幅二维X光片进行数据重建处理,得到该物品一幅一定厚度(如1毫米)的切片图像,物体往前移动一定距离(如2毫米),再进行以上旋转拍片,得到该位置

新型无镜成像系统应用于病理实验室

  加州大学洛杉矶分校Aydogan Ozcan博士的实验室已经研发成功了多种可用于生物医学研究的新型光学设备。最近Ozcan的团队报道了一种用于开发智能手机附件的新型荧光成像技术,该技术可以用来探测和定量检测双链DNA,就像该实验室曾经研发的细胞数量计算仪器一样,该技术仍然涵盖全息处理分析、高分辨

3D无标记断层扫描技术探索巨噬细胞防疫功能及纳米材...

3D无标记断层扫描技术探索巨噬细胞防疫功能及纳米材料毒性1、断层扫描3D显微镜对活巨噬细胞成像研究 巨噬细胞在伤口愈合过程中起着重要作用,是一类在吞噬过程具有内吞和消化外界物质潜能的白细胞。在血液中,存在一些未分化的白细胞即单核细胞,单核细胞可以分化为其他的细胞如巨噬细胞或树突状细胞。 动物或人在被

全自动活细胞实时荧光成像系统概述

  全自动活细胞实时荧光成像系统是一种用于生物学领域的分析仪器,于2018年12月11日启用。  1、显微镜采用全封闭箱式设计,并可通过机身TFT触摸屏进行自动进样,调用预设实验程序自动进行成像实验。  2、全自动成像方式,无需任何手动调节即可实现普通明场、斜照明和高衬度浮雕效果PGC成像,并可在荧

凝胶成像系统应用

  广泛的应用范围:可用于DNA/RNA凝胶、蛋白质凝胶、印迹杂交膜(包括Western, Southern, Northern, Slot/点杂交膜)、放射自显影胶片、酶标板、细菌培养平板等图像的成像及分析处理。  凝胶图像分析软件有助于研究人员正确、迅速地得到电泳照片和分析结果。帮助广大从事分子

高内涵成像系统在3D细胞培养中的应用

建立生理相关的体外模型对于进一步了解神经疾病的机制以及靶向药物开发至关重要。iPSC衍生的神经元显示出对化合物筛选和疾病建模的巨大希望,然而目前已经开发出使用三维(3D)培养物作为对神经元细胞的测定开发的有效方法。3D细胞培养被认为是更接近人类组织的重演方式,包括结构、细胞组织、细胞- 细胞和细胞-

质标所在金基纳米材料分析检测应用方面取得新进展

  近日,中国农业科学院农业质量标准与检测技术研究所与国家纳米科学中心、福州大学等单位开展联合攻关,研究通过调控和有序自组装后金基纳米材料(AuNMs)对电化学、可见光谱、荧光等信号的传导、放大和增强效应以及在分析科学方面的应用技术,在AuNMs用于农产品及饲料质量安全等领域分析检测方面取得新进展。

科研人员研发高分辨实时成像协同纳米操控技术

  近日,中国科学院深圳先进技术研究院研究员杨慧团队提出微透镜与原子力显微镜的耦合方法,通过聚焦离子束技术在微透镜表面沉积金刚石尖端,研发出兼具超分辨成像与精准操控功能的新型原子力显微镜探针系统。该技术将传统原子力显微镜光学成像模块的成像分辨率提升1个量级以上,并实现操作过程中200纳米银纳米线的实

凝胶成像系统应用范围

  总体上来说凝胶成像可应用于:凝胶成像系统可以用于:蛋白质、核酸、多肽、氨基酸、多聚氨基酸等其他生物分子的分离纯化结果作定性分析。  (1)分子量定量  对于一般常用的DNA胶片,利用分子量定量功能,通过对胶上DNAMarker条带的已知分子量注释,自动生成拟合曲线,并以它衡量得到未知条带的分子量

xCELLigence系统实时检测神经毒性(一)

xCELLigence系统持续检测神经细胞培养Sebastian Diemert, Julia Grohm, Svenja,Tobaben, Amalia Dolga, Carsten Culmsee德国,马尔堡大学,药理学与临床药学研究所摘要:为了研究类神经元细胞HT-22,及原代培养大鼠皮质神经

X射线成像技术,实时观察激光金属3D打印部件的缺陷

  激光金属3D打印技术工艺过程,容易产生各种缺陷,特别是在大型零件的打印时。如果我们可以实时观测熔池的打印情况,就可以清晰地了解缺陷的原因,将对整个金属3D打印领域产生巨大的影响。  美国的一组科学家团队正在利用X射线成像技术研究SLM激光熔融3D打印的金属部件,从而确定金属3D打印部件缺陷形成的

Fluoptics用于外科手术实时指导的成像系统

   Fluoptics是一家致力于开发实时指导外科手术的新型成像系统的公司,该公司研发的Fluobeam® 成像系统具备灵活,便携;不需要暗室也可以实现完美成像;实时监测,数据可以以图片,video多种格式输出等特点,兼容适用于CY5以上的所有荧光探针,是外科医生手术实时监测的好帮手。    Fl

面向创新应用的先进纳米材料国际联合实验室揭牌

  近日,哈尔滨工程大学与俄罗斯圣彼得堡国立大学共建“面向创新应用的先进纳米材料国际联合实验室”揭牌仪式在哈尔滨工程大学举行。  哈尔滨工程大学副校长吴林志出席仪式,俄罗斯圣彼得堡国立大学数学与力学学院院长亚历山大·拉佐夫教授、面向创新工程应用先进纳米材料力学实验室主任鲁斯兰·瓦里耶夫教授等俄方代表

新技术可在不透明材料中实现实时成像

  据近日的《自然—光子学》上的一项报告称,科学家研发出了一种技术,可在材料不透明和光散射器高度散射的情况下仍然实现实时成像。这项技术或可应用于基于地球的天文学和深层组织成像这两个目前被光散射和大密度材料所困扰的领域。   Yaron Silberberg等人展示了一种基于波前成型的设计方案,

纳米蘑菇传感器:一种材料-多种应用

  来自冲绳科学技术研究所(OIST)的研究人员发明了一种等离子体纳米传感器,可以实时监测细胞的增殖,并具有其他的应用潜质。研究发表在最近的《ACS applied Materials and Interfaces》杂志上。揭示细胞的增殖过程是对细胞和组织的健康和功能的重要洞察。  这种材料最吸引人

纳米蘑菇传感器:一种材料-多种应用

来自冲绳科学技术研究所(OIST)的研究人员发明了一种等离子体纳米传感器,可以实时监测细胞的增殖,并具有其他的应用潜质。研究发表在最近的《ACS applied Materials and Interfaces》杂志上。揭示细胞的增殖过程是对细胞和组织的健康和功能的重要洞察。这种材料最吸引人的地方在

纳米材料在体外诊断技术中的应用(一)

由于纳米材料具有独特的光、磁、电、热性能,可用于产生不同类型的检测信号、放大检测信号的强度及简化检测过程等,因此基于纳米材料的体外诊断技术具有广阔的应用前景。纳米材料可以应用于核酸、蛋白、小分子、细菌和病毒等的检测。体外诊断(In Vitro diagnosis,IVD)技术,通常是指在人体之外,通

凝胶成像系统的应用范围

  总体上来说凝胶成像可应用于:凝胶成像系统可以用于:蛋白质、核酸、多肽、氨基酸、多聚氨基酸等其他生物分子的分离纯化结果作定性分析  (1)分子量定量  对于一般常用的DNA胶片,利用分子量定量功能,通过对胶上DNA Marker条带的已知分子量注释,自动生成拟合曲线,并以它衡量得到未知条带的分子量

凝胶成像系统的应用范围

  总体上来说凝胶成像可应用于:凝胶成像系统可以用于:蛋白质、核酸、多肽、氨基酸、多聚氨基酸等其他生物分子的分离纯化结果作定性分析。  (1)分子量定量  对于一般常用的DNA胶片,利用分子量定量功能,通过对胶上DNA Marker条带的已知分子量注释,自动生成拟合曲线,并以它衡量得到未知条带的分子

NanoLive实时无标记3D显微镜助力线虫无损伤研究

线虫研究新技术----NanoLive实时无标记3D显微镜  3D cell Explorer 实时无标记技术对C.elegans活细胞成像的重要性秀丽隐杆线虫(C.elegans)是生物医学研究中应用最广泛的模式生物之一。当前成像技术的一个主要问题是光毒性,它导致对活细胞动力学观察的干扰,开发新的

首个纳米级单分子质量实时测定系统问世

  这一成果有效简化了现有分子质量测量程序   美国加州理工学院近日开发出仅有百万分之一米大小的纳米电子机械系统(NEMS)谐振器,可实时测定单个分子的质量。该成果刊登在最近一期的《自然—纳米技术》杂志上。   过去,科学家一直依靠现有质谱分析技术测量分子的质量,程序十分繁琐。首先要将被测样品中

研究实现单个纳米尺度物体无标记光学显微成像

原文地址:http://news.sciencenet.cn/htmlnews/2024/3/519411.shtm