Nanodisc配合冷冻电镜提升膜蛋白的分辨率
Toxic, hot, and spicy: Nanodiscs improve membrane protein resolution in cryo-EM(作者:Cube Biotech) Nanodisc结合冷冻电镜应用时,Nanodisc提升了通过冷冻电镜对膜蛋白的解析率,同时揭示了功能性磷脂所扮演的重要角色。 The last few years have seen a tremendous increase in high-resolu......阅读全文
Nanodisc配合冷冻电镜提升膜蛋白的分辨率
Toxic, hot, and spicy: Nanodiscs improve membrane protein resolution in cryo-EM(作者:Cube Biotech) N
冷冻电镜结合-Nanodisc在膜蛋白研究的应用(一)
细胞生物膜所含的蛋白称为膜蛋白,其参与和行使了众多细胞功能,包括细胞与外界进行物质运输、信息传递、能量交换等。膜蛋白担任了各种神经信号分子、激素和其他底物的受体,构成了各种离子跨膜的通道,以及构成各类转运蛋白。在人体蛋白中,有大约 30% 是膜蛋白。FDA 批准的新药中,绝大多数都以膜蛋白为靶点
冷冻电镜结合-Nanodisc在膜蛋白研究的应用(二)
将膜蛋白组装到 Nanodiscs 中主要有两种方法。第一:组装溶解在去污剂中的膜蛋白在去污剂存在条件下将膜蛋白纯化,然后再添加 MSPs 和磷脂。含有膜蛋白的 Nanodiscs 能够自发地组装,在去除掉表面活性剂后可以通过凝胶过滤(排阻层析)等方式来纯化。第二:Nanodiscs 与无细胞表达体
冷冻电镜解决膜蛋白的结构
冷冻电子显微镜技术已经发展成为一个成熟的方法,应用于各种复杂的生物分子体系的高分辨结构研究。按照目前的发展势头,解决生物分子结构组(structural proteome)的问题已经不是遥不可及的了。在解决单一静态结构的基础上,冷冻电镜也展示了其研究多构象体系的潜力。下面对冷冻电镜在结构生物学研究领
冷冻电镜技术突破原子分辨率障碍
如果想绘制出蛋白质最微小的部分,科学家通常选择不多:使数百万个单个蛋白质分子排列成晶体,然后用X射线晶体学分析它们;或者快速冷冻蛋白质的副本,然后用电子轰击它们,这是一种低分辨率的方法,叫做冷冻电镜技术。 据《科学》报道,现在,科学家们第一次将冷冻电镜的分辨率提高到原子水平,以精确定位各种蛋白质
赛默飞推出2款突破性成像过滤器-提升冷冻电镜分辨率
赛默飞世尔科技推出了两种突破性成像过滤器 Thermo Scientific Selectris成像过滤器和 Thermo Scientific Selectris X 成像过滤器,将冷冻电子显微镜(简称冷冻电镜)提升到新的水平,实现了以真正的原子级分辨率观察蛋白质。 与 Thermo Sci
冷冻电镜样品冷冻
样品冷冻样品冷冻其实是科学家们很早就想到的思路,但是冷冻之后样品中水分子形成冰晶,不仅产生强烈电子衍射掩盖样品信号,还会改变样品结构。直到1974年,Kenneth A. Taylor和Robert M. Glaeser在-120℃观察含水生物样品时未发现冰晶形成,而且发现冷冻样品能够耐受更大剂量和
冷冻电镜新突破!袁曙光团队解析膜蛋白靶标三维结构
近日,中国科学院深圳先进技术研究院医药所计算机辅助药物设计中心袁曙光课题组与德国马普生物物理所合作,利用真实细胞膜冷冻电镜技术,解析了血清素受体5-HT3离子通道的高分率三维精细结构,并通过生物计算系统阐述了其信号转导的分子原理。相关成果发表于《自然—通讯》。袁曙光和Mikhail Kudrya
冷冻电镜
说起冷冻电镜,小编想不管是研究生还是教授大咖,可能和科研有那么一丁点联系的人对这个名字都不会陌生,因为它实在太出名了!基于冷冻电镜产出的科研成果很多都发表在Nature、Science、Cell等顶刊上(羡慕脸),堪称NSC神器。冷冻电镜技术的发展直接带动了生命科学领域,特别是结构生物学的飞速发展,
冷冻电镜研究中的华人功臣——程亦凡
2017年诺贝尔化学奖颁给了 Jacques Dubochet、Joachim Frank 和 Richard Henderson,表彰他们在用冷冻电镜解析溶液中生物大分子高分辨率结构方法学方面做出的开创性贡献。▲ 程亦凡在物理所做学术报告在冷冻电镜的这场技术革命中,有位华人科学家也功不可没——程
高分辨率冷冻电镜首次解析超级复合物结构
在国家重点研发计划“蛋白质机器与生命过程调控”重点专项的支持下,“光合作用重要蛋白质机器的结构、功能与调控”和“蛋白质机器的高分辨率冷冻电镜前沿技术及应用”项目联合攻关,取得突破进展,发现了植物的光适应与捕光调节新机制。图片源自网络 光合作用为世界上几乎所有的生命体提供赖以生存的物质和能量,
冷冻电镜分辨率的确定及二级结构的确定
分辨率的确定及二级结构的确定在模型优化的过程中,通常有很多指标给出结构的分辨率信息。目前一个较为广泛使用的分辨率信息参数是被称为傅里叶壳层关联函数(Fourier shell correlation,FSC)曲线,并通过在曲线上选取一个合适的阈值来判定分辨率。在模型优化中经常伴随着过拟合的问题。过拟
冷冻电镜的发展
细胞里面的生命活动井然有序,每一个部分都有其特定的结构,承担不同的功能。生物大分子则是一切生命活动的最终执行者,它们主要是核酸和蛋白。核酸携带了生命体的遗传信息,而蛋白是生命活动的主要执行者。自现代分子生物学诞生以来的半个世纪里,解析和分析生物大分子的结构、进而阐释其功能机制一直都是现代生命科学
冷冻电镜的原理
冷冻电镜是用于扫描电镜的超低温冷冻制样及传输技术,可实现直接观察液体、半液体及对电子束敏感的样品,如生物、高分子材料等。样品经过超低温冷冻、断裂、镀膜制样(喷金/喷碳)等处理后,通过冷冻传输系统放入电镜内的冷台(温度可至-185℃)即可进行观察。冷冻电镜中的冷冻技术可以瞬间冷冻样品,并在冷冻状态下保
冷冻电镜成像
冷冻电镜成像冷冻的样品冷冻输送器转移到电镜的样品室,在电镜成像之前,需确认样品中的水处于玻璃态。由于生物样品对高能电子的辐射敏感,成像时必须使用低剂量技术(
冷冻电镜原理
冷冻电镜原理冷冻电子显微学解析生物大分子及细胞结构的核心是透射电子显微镜成像,其基本过程包括样品制备、电子显微镜成像、图像处理及结构解析等几个基本步骤。冷冻电镜解析结构步骤 图片来源:中科院计算所透射电子显微镜成像过程中,电子束穿透样品,将样品的三维电势密度分布函数沿着电子束的传播方向投影至与传播
冷冻电镜原理
冷冻电镜原理冷冻电子显微学解析生物大分子及细胞结构的核心是透射电子显微镜成像,其基本过程包括样品制备、透射电子显微镜成像、图像处理及结构解析等几个基本步骤(图3.1)。在透射电子显微镜成像中,电子枪产生的电子在高压电场中被加速至亚光速并在高真空的显微镜内部运动,根据高速运动的电子在磁场中发生偏转的原
冷冻电镜分类
冷冻电镜分类目前我们讨论的冷冻电镜基本上指的都是冷冻透射电子显微镜,但是如果我们以使用冷冻技术的角度定义冷冻电镜的话,冷冻电镜主要可以分为冷冻透射电子显微镜、冷冻扫描电子显微镜、冷冻蚀刻电子显微镜。 冷冻透射电子显微镜冷冻透射电镜(Cryo-TEM)通常是在普通透射电镜上加装样品冷冻设备,将样品冷却
冷冻蚀刻电镜技术
冻蚀刻(Freezeetching)技术是从50年代开始发展起来的一种将断裂和复型相结合的制备透射电镜样品技术,亦称冷冻断裂(Freezefracture)或冷冻复型(Freezereplica),用于细胞生物学等领域的显微结构研究。
冷冻电镜研究
在低温下使用透射电子显微镜观察样品的显微技术,就叫做冷冻电子显微镜技术,简称冷冻电镜(cryo-electron microscopy, cryo-EM)。冷冻电镜是重要的结构生物学研究方法,它与另外两种技术:X射线晶体学(X-ray crystallography)和核磁共振(nuclear ma
冷冻电镜里程碑意义的成果
在最近几年,冷冻电镜技术有了革命性的进步,主要得益于三个方面的突破。首先是样品制备,通过利用薄膜碳层甚至石墨烯可以用更薄的冰层包裹分子样品来提高信噪比。第二个突破是电子的探测技术,也就是电子探测器的发明。在300 keV 电子的轰击下,传统的器件都会被高能量打坏,因此在电子探测器出现之前,冷冻电镜中
冷冻电镜:一次又一次的分辨率突破
过去两年对于冷冻电子显微镜(cryo-EM)而言,是让人兴奋的,甚至可以说是革命性的。到2014年底,两个3.2 Å分辨率的结构通过这种方法确定:一个是β半乳糖苷酶,另一个是酵母线粒体核糖体的大亚基。 冷冻电镜达到3 Å的分辨率,这本身就是一个很大的成就,标志着结构生物学进入新时代。那些一直在
冷冻电镜“新玩法”-近原子分辨率助力观察完整藻胆体
近日,科技部发布了技术成果——膜生物学国家重点实验室首次揭示完整藻胆体的三维结构。其中利用近原子分辨率的冷冻电镜获得了完整藻胆体的近原子分辨率的三维结构。攻克了藻胆体在冷冻制样时盐浓度高、稳定性差、具有优势取向等难题,整体结构分辨率达到3.5,核心区域分辨率达到3.2。 光合作用是地球上的生物
扫描电镜分辨率
扫描电镜是高能电子散射固体材料,可获得许多特征信号!微观成像是扫描电镜基本功能,要求高分辨,so可为其他特征信号分析提供精确导航!sem一般标配se探测器,用se信号获得高分辨像,且se信号可以充分代表扫描电镜电子光学性能。whysenotother?比靠斯:在电子束样品作用区,可能只有se取样面积
扫描电镜分辨率
分辨率指能分辨的两点之间的最小距离。分辨率d可以用贝克公式表示:d=0.61l/nsina ,a为透镜孔径半角,l为照明样品的光波长,n为透镜与样品间介质折射率。对光学显微镜 a=70°-75°,n=1.4。因为 nsina200nm。要提高分辨率可以通过减小照明波长来实现。SEM是用电子束照射
冷冻电镜的技术特点
冷冻电镜(Cryo-microscopy)通常是在普通透射电镜上加装样品冷冻设备,将样品冷却到液氮温度(77K),用于观测蛋白、生物切片等对温度敏感的样品。通过对样品的冷冻,可以降低电子束对样品的损伤,减小样品的形变,从而得到更加真实的样品形貌。
冷冻电镜的工作原理
透射电镜的总体工作原理是:由电子枪发射出来的电子束,在真空通道中沿着镜体光轴穿越聚光镜,通过聚光镜将之会聚成一束尖细、明亮而又均匀的光斑,照射在样品室内的样品上;透过样品后的电子束携带有样品内部的结构信息,样品内致密处透过的电子量少,稀疏处透过的电子量多;经过物镜的会聚调焦和初级放大后,电子束进入下
冷冻电镜的功能介绍
冷冻电镜(Cryo-microscopy)通常是在普通透射电镜上加装样品冷冻设备,将样品冷却到液氮温度(77K),用于观测蛋白、生物切片等对温度敏感的样品。通过对样品的冷冻,可以降低电子束对样品的损伤,减小样品的形变,从而得到更加真实的样品形貌。
冷冻电镜的发展历史
自1933年第一台透射电子显微镜被搭建以来,透射电子显微镜就是物理学家、材料学家、生物学家观测微观结构的主要手段。然而,生物样品中含有的水会导致样品无法在透射电镜高真空的环境下保存,而且生物样品会受到电子束强大的辐射作用变质。虽然人们一度利用脱水、固定、染色的方式来制作样本进行观察,但生物学家希望能
冷冻电镜发展过程
冷冻电镜发展过程冷冻电子显微镜技术(cryo-electron microscopy)是在20世纪70年代提出的,早在20世纪70年代科学家们就利用冷冻电镜研究病毒分子的结构,首次提出了冷冻电镜技术的原理、方法以及流程的概念。到了20世纪90年代,随着冷冻传输装置、场发射电子枪以及CDD成像装置的出