FKM多光谱荧光动态显微成像系统应用于释秋海棠蓝色叶...

FKM多光谱荧光动态显微成像系统应用于释秋海棠蓝色叶片的特殊光合机制研究KM多光谱荧光动态显微成像系统帮助科学家解释秋海棠蓝色叶片的特殊光合机制2016年10月,国际学术权威刊物Nature出版集团旗下子刊《Nature Plants》发表了英国布里斯托大学Heather Whitney研究团队的一篇研究论文。论文研究了一种喜阴植物秋海棠(Begonia grandis × B. pavonina,秋海棠与孔雀秋海棠的杂交种),发现它能通过自己的蓝晕色叶片,利用其特有的光合质体iridoplast来增强光合作用,从而适应了极度弱光的环境条件(Jacobs,2016)。 图1. 秋海棠蓝晕色叶片和晕色体iridoplast. a. 叶片照片 b. 晕色体的落射光显微镜明场照片 c. 单个晕色体的扫描电镜照片 d. 单个晕色体的特征反射光谱曲线很早以前,科学家们就发现生长在低纬度热带雨林生态系统中的一些陆生植物叶片在特定......阅读全文

FKM多光谱荧光动态显微成像系统应用于释秋海棠蓝色叶...

FKM多光谱荧光动态显微成像系统应用于释秋海棠蓝色叶片的特殊光合机制研究KM多光谱荧光动态显微成像系统帮助科学家解释秋海棠蓝色叶片的特殊光合机制2016年10月,国际学术权威刊物Nature出版集团旗下子刊《Nature Plants》发表了英国布里斯托大学Heather Whitney研究团队的一

FluorCam多光谱荧光成像技术应用案例——藻类病害表型研究

2019年中国海洋大学装备了国内首套海洋生物表型组学光学成像分析系统,这一系统包含以下子系统:lFKM多光谱荧光动态显微成像系统lFluorCam多光谱荧光成像系统lFluorCam叶绿素荧光成像系统lSpecim IQ 高光谱成像仪lMC1000 8通道藻类培养监测系统             

植物多光谱荧光成像系统多激发光、多光谱荧光成像技术

  多激发光、多光谱荧光成像技术:通过光学滤波器技术,仅使特定波长的光(激发光)到达样品以激发荧光,同时仅使特定波长的激发荧光到达检测器。不同的荧光发色团(如叶绿素或GFP绿色荧光蛋白等)对不同波长的激发光“敏感”并吸收后激发出不同波长的荧光,根据此原理可以选配2个或2个以上的激发光源、滤波轮及相应

高通量光学成像系统助力应用于藻类表型研究

日前,由北京易科泰生态技术有限公司提供的国内首套海洋生物表型组高通量光学成像系统在中国海洋大学安装测试完成。这套系统包括3个子系统:FKM多光谱荧光动态显微成像系统FluorCam多光谱荧光成像系统Specim IQ 高光谱成像仪FluorCam多光谱荧光成像系统是FluorCam叶绿素荧光成像技术

藻类表型研究全面解决方案

藻类是蓝藻门、眼虫藻门、金藻门、甲藻门、绿藻门、褐藻门、红藻门等一系列水生生物的总称。其形态种类众多,小至微米级的单细胞微藻,大至长达几米乃至几十米的大型褐藻。藻类作为水体中最重要的初级生产者,对整个生态系统乃至地球圈的稳定都起着极为重要的作用。莱茵衣藻、蓝藻等模式藻类为功能基因、生物进化、光合作用

模块式植物表型分析技术方案——拟南芥UV胁迫的响应机制

植物面对各种生物和非生物胁迫时,会调整它们的响应机制来优化发育和适应程序。UV辐射作为一种环境因子,会影响植物的光合过程并触发细胞死亡。华沙生命科学大学的Anna Rusaczonek评估了红/远红光感受器光敏色素A和光敏色素B在拟南芥UV胁迫响应中的作用。通过测量相关突变株的CO2同化、叶绿素荧光

FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像...

FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像是什么1. 多光谱荧光的发现及特性二十世纪八九十年代,植物生理学家对植物活体荧光——主要是叶绿素荧光研究不断深入。激发叶绿素荧光主要是使用红光、蓝光或绿光等可见光。当科学家使用UV紫外光对植物叶片进行激发,发现植物产生了具备4个特征性波峰的荧

植物养分利用与重金属毒害原位研究先进技术综述-2

二、多光谱荧光动态显微成像技术(Fluorescence Kinetic Microscope)FluorCam叶绿素荧光成像技术的出现解决了研究各种胁迫因素对植物宏观光合表型的问题。但对于微观层次,每个细胞乃至叶绿体的光合表型研究还是无能为力。就在Nedbal开发FluorCam叶绿素荧光成像技术

植物多光谱荧光成像系统UV紫外光激发多光谱成像技术

  UV紫外光激发多光谱荧光成像技术:长波段UV紫外光(320nm-400nm)对植物叶片激发,可以产生具有4个特征性波峰的荧光光谱,4个波峰的波长为蓝光440nm(F440)、绿光520nm(F520)、红光690nm(F690)和远红外740nm(F740),其中F440和F520统称为BGF,

OJIP、QA再氧化、Kautsky分析Cd对拟南芥光合作用的影响

叶绿素荧光成像技术—OJIP、QA再氧化、Kautsky分析Cd对拟南芥光合作用的影响叶绿素荧光动力学(Kautsky诱导效应)主要用于区分光化学非光化学反应,获得光化学效率等参数。而快速叶绿素荧光动力学(OJIP)则主要用以获取与光系统(PS)尤其是光系统(PSⅡ)和电子传递元件的结构和功能有关的

FKM叶绿素荧光显微成像技术研究C4植物叶片花环结构的...

FKM叶绿素荧光显微成像技术研究C4植物叶片花环结构的光合特性叶肉细胞和维管束鞘细胞组成的“花环”结构,是C4植物的重要特征。C4植物的叶肉和维管束鞘细胞除了在结构上表现出这种特殊的“花环”,更重要的是形成其区别于C3植物的特殊光合途径,使得C4植物能够耐受更高的光强,并获得更强的干旱抗性。   

植物多光谱荧光成像系统的广泛应用

  植物多光谱荧光成像系统可用于叶绿素荧光动态成像分析、多激发光光合效率成像分析、紫外光激发多光谱荧光成像分析、PAR吸收与NDVI(植物光谱反射指数)成像分析、GFP/YFP稳态荧光成像等,全面、非接触、高灵敏度反映植物生理生态、胁迫生理与抗性、光合效率等。Fluorcam植物多光谱荧光成像系统广

植物多光谱荧光成像系统配置规格

  1) 一体式:可进行叶绿素荧光成像分析及UV紫外光源激发4个波段的荧光成像分析,成像面积13 x 13cm,系统高度集成(整体配置于一个一体式暗适用操作箱内)、方便使用,具备7位滤波轮及多光谱荧光成像滤波器组、高分辨率CCD镜头、UV紫外光激发多光谱荧光成像功能模块及程序软件等;具体又有如下几种

开放式动态荧光成像系统概述

  开放式动态荧光成像系统是采用高集成设备有灵活的几何结构设计,LED板和光源发出饱和闪光能从不同的角度和距离对样品进行照射,摄像机的位置也是可以进行调节的,提高了测量的精度。标准的成像面积为13×13厘米,可选20×20厘米成像面积,成像大小主要依赖于光源。大成像面积可达到200×100厘米。LE

FluorCam多光谱荧光成像技术介绍

FluorCam多光谱荧光成像系统作为FluorCam叶绿素荧光成像系统的最高级型号,是目前唯一有能力实现了一台仪器上同时完成叶绿素荧光、UV-MCF多光谱荧光、NDVI归一化植被指数以及GFP、YFP、BFP、RFP、CFP、DAPI等荧光蛋白与荧光染料的成像分析功能。同时也可以加装RGB真彩成像

光纤式在体荧光显微成像系统在动态观测活体动物脑内...

光纤式在体荧光显微成像系统在动态观测活体动物脑内神经元中的应用中国上海复旦大学脑科学研究院、医学神经生物学国家重点实验室的石 莹,陈露岚,姜 民等人在生理学报 Acta Physiologica Sinica, December 25, 2012, 64(6): 695–699 发表文章对建立大鼠脑

活体多光谱荧光成像应用实例(三)

总结活体多光谱荧光成像可以扣除组织自体荧光和进行多种荧光团成像。这可以增强信噪比并进行先进的多重荧光成像,实现更强大的研究设计。参考文献[1] Levenson RM, Lynch DT, Kobayashi H, Backer JM, Backer MV (2008). Multiplexing

活体多光谱荧光成像应用实例(二)

优化和多光谱建模启始成像和研究设置包括用于优化设置和建模的初始步骤:1- 荧光团成像(体外)2- 生成光谱模型3- 体内模型评估首先,我们建议您使用上文确定的滤光片对稀释后的荧光团进行成像。一旦采集到图像,通过将高斯曲线拟合到荧光团的实验曲线来创建光谱曲线(图7)。应用光谱模型 一旦光谱曲线实现了优

模块式多光谱荧光成像技术方案

其主要特点如下:可选配从紫外光到远红光不同波段的光源板可进行植物对不同波段光源光合作用与生理生态响应实验叶绿素荧光成像分析:可运行Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等protocols多光谱荧光成像分析:包括BG荧光(蓝色波段和绿色波段)成像和RFr荧光(红色荧光和远红荧光

活体多光谱荧光成像应用实例(一)

前言传统的活体光学荧光成像(FLI)采用一个激发滤光片和一个发射滤光片。这对于区分靶向信号、可能存在的报告基因信号以及自体荧光组织信号而言有着诸多局限。多光谱(MS)FLI 采用多个激发滤光片和单个发射滤光片,或单个激发滤光片搭配多个发射滤光片,可以产生独特的荧光区域或材料的光谱曲线。(1)因此,图

开放式动态荧光成像系统光源相关叙述

  ·光化光强度大可达到3000 µmol(photons)/m².s.;  ·超脉冲光强度标准版本大可达到3000 µmol(photons)/m².s.,定制产品大可达到5000 µmol(photons)/m².s.,配备QA再氧化测量附件大可达到7000 µmol(photons)/m².s

开放式动态荧光成像系统技术规格相关

荧光参数测量的参数:Fo、FM、FV、Fo'、FM'、FV'、FT;计算的约50种参数:FV/ FM、FV'/ FM'、ΦPSII、NPQ、qN、qP、Rfd、PAR吸收率、光合电子传递速率(ETR)和其他光源455 nm、470nm、505 nm、570 n

EcoTech植物表型成像分析全面解决方案(一)

FluorCam叶绿素荧光成像技术红外热成像技术高光谱成像技术PlantScreen植物高通量表型成像分析技术FluorCam叶绿素荧光成像技术方案作物产量的提高需要同步化综合评估作物形态性状和生理性状,高通量定量化作物生理状态测量分析技术尤为重要,而叶绿素荧光成像技术是监测作物生理性状表型的最适合

光谱成像技术及其应用(三)

Paul J.Williams等利用sisuCHEMA高光谱成像技术,对镰刀霉属生长特性及其品种差异进行了研究,论文发表在2012年Anal Bioanal Chem.上(Near-infrared (NIR) hyperspectral imaging and multivariate

植物表型分析技术快讯—多光谱荧光成像系统研究植物...1

植物表型分析技术快讯—多光谱荧光成像系统研究植物胁迫响应FluorCam多光谱荧光成像系统是国际知名FluorCam叶绿素荧光成像技术的高级扩展产品,其高度集成,功能强大,应用广泛,利用系统中的叶绿素荧光成像、多光谱荧光成像、红外热成像技术及RGB成像,可对植物进行全面、非接触的监测,高灵敏度反映光

植物表型分析技术快讯—多光谱荧光成像系统研究植物...2

案例2: 由真菌Rosellinia necatrix引起的白根腐病,是影响鳄梨作物的最主要的土壤传播疾病之一。白根腐病会引起植物根系腐烂、叶片发黄枯萎,甚至导致植株在出现第一个叶面症状几周后死亡。病害的早期检测与防治至关重要。本案例中,对感染Rosellinia necatrix后的植

动态荧光成像定量分析系统相关数据简介

  动态荧光成像定量分析系统是一种用于药学领域的分析仪器,于2016年12月19日启用。  技术指标  Flexstation 3多功能酶标仪带有双光栅提供1nm步径全波长检测,可对6-384孔微孔板进行光吸收(紫外-可见)(200-1000nm)、荧光强度(250-850nm)、化学发光(250-

荧光成像系统

对完全校准好的荧光成像系统,当用不同的滤色镜组时,样品上一个点在检测器上精确成像为一个点,也就是像素对像素。然而,不同颜色的通道 merge 时,物镜的色差校正不够、滤镜光路没有完全对准都会使得荧光信号之间的记录有差错。对具有复杂图案的图像或明暗信号相混的图像,这个可能就检测不到。会得出这样的结论:

荧光成像系统

用荧光显微镜进行3D球状体荧光成像时,需要进行仪器设置优化和使用高级功能才能得到更好的成像结果。对球状体进行Z轴层扫时,需要选择合适的物镜并进行合适地聚焦才能拍出更清晰的图片。EVOS细胞成像系统和配套的CellesteTM成像分析软件可以完美地对球状体的大小、结构和蛋白表达水平进行定性和定量分析。

徕卡FLUOSYNC:多色光谱拆分宽场荧光成像方法

作者Johannes Amon博士Peter Laskey博士,徕卡显微系统公司FluoSync 是一种使用单次曝光同时进行多通道荧光成像的精简方法。传统的荧光成像方法通常按顺序对每个通道成像,以减少荧光团之间的串扰。之前已单独介绍了多光谱成像以及后续的线性拆分或基于相量的光谱拆分方法。每一种方法都