Science里程碑成果:400种常见病遗传信息

发表在《科学》(Science)杂志上的数据表明与多种多样疾病相关的DNA改变影响的是基因组开启和关闭基因的机制而非是基因本身。 来自华盛顿大学的研究人员证实了与超过400种常见疾病以及临床特征相关的大多数遗传变化影响了基因组的调控线路。这些DNA区域包含了控制基因何时及何地被开启或关闭的指令。其中大多数的改变影响了人类发育早期即机体的组织最易受到伤害之时处于活性状态的线路。 通过建立控制线路的广泛蓝图,该研究也揭露了从前隐藏在不同疾病之间的联系。这些联系或可解释常见的临床特征,为并精确找到引起或受某种特定疾病影响最大的特异细胞和组织类型提供了一种新的方法。这些研究结果为了解疾病的遗传病因提供了一个重要的模式转变,并为开发出诊断和治疗开辟了新的路径。研究结果在线发布在9月5日的 Science杂志上。 “基因只占基因组的一小部分,以往大多数绘制疾病遗传原因的努力都因远离基因的信号而遭受挫折。现在我们知道......阅读全文

污染改变表观遗传信息

  美国《科学美国人》杂志日前刊登了华盛顿州立大学生殖生物学中心主任迈克尔·斯金纳的研究文章《一种新的遗传》。这项研究通过动物实验发现,特定污染物会引发可导致疾病或生殖问题的表观遗传修饰,而这是在不改变动物DNA序列的情况下发生的。  迈克尔·斯金纳的实验室以及其他一些实验室,主要针对大鼠和小鼠的一

遗传信息的标准流程

遗传信息的标准流程大致可以这样描述:“DNA制造RNA,RNA制造蛋白质,蛋白质反过来协助前两项流程,并协助DNA自我复制”。

表观遗传信息的定义

中文名称表观遗传信息英文名称epigenetic information定  义细胞或者多细胞生物中与DNA序列本身无关的,但可以传递给子代细胞的信息。这是在发育过程中获得的信息,能影响基因表达,也能对表型产生影响。如DNA甲基化、染色质结构改变和环境因子(如氧化剂和毒剂等)对DNA的修饰等。应用学

遗传信息的转移方向

遗传信息的转移可以分为两类:第一类用实线箭头表示,包括DNA的复制、RNA的转录和蛋白质的翻译,即①DNA→DNA(复制);②DNA→RNA(转录);③RNA→蛋白质(翻译)。这三种遗传信息的转移方向普遍地存在于所有生物细胞中。第二类用虚线箭头表示,是特殊情况下的遗传信息转移,包括RNA的复制,RN

其它遗传病的基因治疗其它遗传病

诸如白种人中常见的囊性纤维化的进展很快。对于DMD的基因治疗,由于有小鼠动物模型,也取得一定进展。例如1993年法国将Ad-RSVmDys(腺病毒-罗斯病毒小肌营养不良蛋白基因重组体)注入小鼠肌内成功。即用腺病毒为载体,与小肌营养不良蛋白(minidystrophin)基因的cDNA重组,在RSV启

遗传信息的特殊传递方式

逆转录在中心法则被详细阐述之后,人们发现了逆转录病毒。这些病毒可通过一种叫做逆转录酶的催化,以RNA为模板逆转录合成cDNA再由cDNA转录出RNA。这肯定了RNA向DNA转录的存在。人们最初以为这种现象仅出现于病毒中,但在最近,在高等动物中亦发现了RNA向DNA转录的逆转录转座子。RNA复制有些病

遗传信息的传递方式结算

逆转录在中心法则被详细阐述之后,人们发现了逆转录病毒。这些病毒可通过一种叫做逆转录酶的催化,以RNA为模板逆转录合成cDNA再由cDNA转录出RNA。这肯定了RNA向DNA转录的存在。人们最初以为这种现象仅出现于病毒中,但在最近,在高等动物中亦发现了RNA向DNA转录的逆转录转座子。RNA复制有些病

表观遗传信息的概念介绍

中文名称表观遗传信息英文名称epigenetic information定  义细胞或者多细胞生物中与DNA序列本身无关的,但可以传递给子代细胞的信息。这是在发育过程中获得的信息,能影响基因表达,也能对表型产生影响。如DNA甲基化、染色质结构改变和环境因子(如氧化剂和毒剂等)对DNA的修饰等。应用学

遗传病的介绍

  遗传病(genetic disease)是由于遗传物质结构或功能改变所导致的疾病,尽管单一遗传病的发病率很低,但总体上,遗传病在儿科疾病中所占的比例非常高。特别是随着科学的发展和社会的进步,急性感染性疾病和营养不良性疾病得到了较有效的控制,儿童的疾病谱发生了很大的改变,遗传病所占的地位越来越重要

遗传病的治疗

   染色体病不仅没有办法根治,改善症状也很困难,个别性染色体异常,如Klinefelter综合征早期使用睾酮,真两性畸形进行外科手术等,有助于症状改善。由于多基因病的发病中环境因素起着重要的作用,故对药物及外科手术有肯定的疗效,在此不多赘述。  分子病和酶病的治疗目前只能针对不同的发病环节,采取措

遗传信息的特殊传递方式介绍

逆转录主条目:逆转录在中心法则被详细阐述之后,人们发现了逆转录病毒。这些病毒可通过一种叫做逆转录酶的催化,以RNA为模板逆转录合成cDNA再由cDNA转录出RNA。这肯定了RNA向DNA转录的存在。人们最初以为这种现象仅出现于病毒中,但在最近,在高等动物中亦发现了RNA向DNA转录的逆转录转座子。R

遗传信息的传递法则和方式

中心法则是一个框架,用于理解遗传信息在生物大分子之间传递的顺序,对于生物体中三类主要生物大分子:DNA、RNA和蛋白质,有9种可能的传递顺序。法则将这些顺序分为三类,3个一般性的传递(通常发生在大多数细胞中),3个特殊传递(会发生,但只在一些特定条件下发生),3个未知传递(可能不会发生)。法则中3类

遗传信息的特殊传递方式介绍

逆转录主条目:逆转录在中心法则被详细阐述之后,人们发现了逆转录病毒。这些病毒可通过一种叫做逆转录酶的催化,以RNA为模板逆转录合成cDNA再由cDNA转录出RNA。这肯定了RNA向DNA转录的存在。人们最初以为这种现象仅出现于病毒中,但在最近,在高等动物中亦发现了RNA向DNA转录的逆转录转座子。R

遗传信息的特殊传递相关介绍

  逆转录  主条目:逆转录  在中心法则被详细阐述之后,人们发现了逆转录病毒。这些病毒可通过一种叫做逆转录酶的催化,以RNA为模板逆转录合成cDNA再由cDNA转录出RNA。这肯定了RNA向DNA转录的存在。人们最初以为这种现象仅出现于病毒中,但在最近,在高等动物中亦发现了RNA向DNA转录的逆转

关于其它遗传病的基因治疗其它遗传病的介绍

  诸如白种人中常见的囊性纤维化的进展很快。对于DMD的基因治疗,由于有小鼠动物模型,也取得一定进展。例如1993年法国将Ad-RSVmDys(腺病毒-罗斯病毒小肌营养不良蛋白基因重组体)注入小鼠肌内成功。即用腺病毒为载体,与小肌营养不良蛋白(minidystrophin)基因的cDNA重组,在RS

遗传病的诊断分析

遗传病的诊断(diagnosis of hereditary disease)可分为产前诊断、症状前诊断和现症病人诊断三种类型。遗传病的确诊是开展遗传咨询和防治工作的基础。遗传病诊断方法有普遍性诊断原则,又有遗传学的特殊诊断手段。普遍性诊断原则是与诊断一般疾病相同的方法,即通过对病史、症状、

遗传病的基因诊断

根据出生缺陷监测和残疾儿调查结果显示,我国是出生缺陷高发国家,每年有近100万出生缺陷儿发生,30%在出生前后死亡,40%造成终生残疾,只有30%可以治愈或纠正。在这些出生缺陷儿中,80%是由于遗传因素造成的。如果能对这些患儿进行症状前诊断或产前诊断,给予及时而适当的治疗和预防,其经济和社会效益是不

多重PCR在遗传病诊断方面的应用用于遗传病的检测

  用于其它遗传病的检测  Pici等人对囊性纤维化( cystic fibrosis,CF)基因突变进行了筛选研究,用4对外显子引物进行多重PCR扩增,然后用限制性内切酶消化PCR产物,再进行垂直聚丙烯酰胺凝胶电泳,检查15例发现有3例发生了基因突变。Pior等设计了8对引物同时检测DMD/BMD

Y染色体遗传病

  Y染色体遗传病Y伴性遗传病(Y-linked inheritable disease)  这类遗传病的致病基因位于Y染色体上,X染色体上没有与之相对应的基因,所以这些基因只能随Y染色体传递,由父传子,子传孙,如此世代相传。因此,被称为“全男性遗传”。  (1)致病基因只位于Y染色体上,无显隐性之

遗传病的基因诊断选择

  一、直接诊断和间接诊断  基因诊断可分为两类:一类是直接检查致病基因本身的异常。它通常使用基因本身或紧邻的DNA序列作为探针,或通过PCR扩增产物,以探查基因无突变、缺失等异常及其性质,这称为直接基因诊断,它适用已知基因异常的疾病;另一类是基因间接诊断。当致病基因虽然已知但其异常尚属未知时,或致

植物密语:不同物种间存在遗传信息交换

  美国弗吉尼亚理工学院的研究员发现,在菟丝子等寄生植物向甜菜等寄主植物“借宿”时,它们之间还进行着数量庞大的遗传信息互换。  这种在分子水平上的植物交流途径是由该校农业与生命科学院的吉姆·韦斯特伍德(Jim Westwood)教授发现的,他在植物病理、生理和草业科学方面均有涉猎。该项发现无疑向研究

遗传信息的中心法则简介

遗传信息在细胞内的生物大分子间转移的基本法则。包含在脱氧核糖核酸(DNA)或核糖核酸(RNA)分子中的具有功能意义的核苷酸顺序称为遗传信息。遗传信息的转移包括核酸分子间的转移、核酸和蛋白质分子间的转移。1957年F.H.C.克里克最初提出的中心法则是:DNA→RNA→蛋白质。它说明遗传信息在不同的大

关于单基因遗传病的基本介绍

  主要是由于基因突变引起DNA分子内碱基排列顺序发生改变,或组合发生改变,从而使遗传信息出现误差,不能合成具有正常功能的酶或蛋白质,引起疾病。根据遗传方式的不同,单基因遗传病又可分为:  ①常染色体显性遗传病  ②常染色体隐性遗传病  ③X连锁隐性遗传病  ④X连锁显性遗传病。这一类疾病主要有:血

卵子神奇功能:遗传信息可“阅后自焚”

  卵子想要健康成长,需要DNA把“生命的密码”交给尽职的“邮差”——mRNA,再正确地翻译成执行功能的蛋白。记者11月14日从南京医科大学获悉,该校苏友强教授团队研究发现全新基因Marf1及其结构域NYN,能够控制mRNA转录和降解。该成果已发表在最新一期美国科学院院报上。  卵子质量好坏直接决定

遗传信息的中心法则的作用

中心法则是现代生物学中最重要最基本的规律之一, 其在探索生命现象的本质及普遍规律方面起了巨大的作用,极大地推动了现代生物学的发展,是现代生物学的理论基石,并为生物学基础理论的统一指明了方向,在生物科学发展过程中占有重要地位。遗传物质可以是DNA,也可以是RNA。细胞的遗传物质都是DNA,只有一些病毒

叶绿体基因组遗传信息获取技术体系建立

  记者日前从中科院昆明植物所获悉,该所种质资源库多年来致力于叶绿体基因组学研究,并建立了较为完善的叶绿体基因组遗传信息获取技术体系。该技术体系解决了叶绿体基因组获取方法需要大量新鲜材料以及一些物种因个体微小须通过二代测序方法获取叶绿体基因组的难题。  2012年以来,科研人员利用二代测序技术研究了

英科学家发现姓氏具有特殊遗传信息

   最新研究发现:我们的姓氏通常与遗传信息有着紧密联系   据美国《每日科学》网站2月11日报道,英国科学家近日经过研究和调查发现,人的姓氏也具有遗传信息,这些遗传信息可确定谱系、共同的祖先和其他的遗传问题,也就是说,人的姓氏和遗传信息具有紧密的联系。   英国莱斯特大学的人类遗传学教授Ma

卵子神奇功能:遗传信息可“阅后自焚”

  卵子想要健康成长,需要DNA把“生命的密码”交给尽职的“邮差”——mRNA,再正确地翻译成执行功能的蛋白。记者11月14日从南京医科大学获悉,该校苏友强教授团队研究发现全新基因Marf1及其结构域NYN,能够控制mRNA转录和降解。该成果已发表在最新一期美国科学院院报上。  卵子质量好坏直接决定

遗传信息的中心法则的意义

由此可见,遗传信息并不一定是从DNA单向地流向RNA,RNA携带的遗传信息同样也可以流向DNA。但是DNA和RNA中包含的遗传信息只是单向地流向蛋白质,迄今为止还没有发现蛋白质的信息逆向地流向核酸。这种遗传信息的流向,就是克里克概括的中心法则(central dogma)的遗传学意义。任何一种假设都

研究更新哺乳动物表观遗传信息编程规律

  近日,中科院北京基因组所研究员刘江团队与南京大学教授黄行许团队合作,揭示了哺乳动物中子代如何继承亲代DNA甲基化图谱的规律,更新了关于受精之后DNA甲基化图谱重新编程的传统认识。相关论文日前发表于《细胞》杂志。  哺乳动物受精后由一个受精卵发育成一个完整的个体,DNA甲基化则是指导受精卵发育成早