硝化细菌——在线生物毒性预警
近年来,硝化细菌已逐渐成为水产养殖界的热门话题,它在水产养殖中的重要性开始引起广泛的注意。可以说,迄今为止,在大规模、集约化的水产养殖模式中,如果没有硝化细菌参与其中的净水作用,想获得成功的养殖,是相当困难的。鱼、虾等水产动物吃、喝、排泄、生活、休息都是在水体中进行的,那么,如何管理水体的水质以便适合它的生长、生存、健壮就成了重要的问题。尤其是现代集约化养殖长期累积了大量养殖生物排泄物,所有有机物的排泄物,甚至其尸体,在异养性细菌的作用下,其中的蛋白质及核酸会慢慢分解,产生大量氨等含氮有害物质。氨在亚硝化菌或光合细菌作用下转化成亚硝酸,亚硝酸与一些金属离子结合以后可以形成亚硝酸盐,而亚硝酸盐又可以和胺类物质结合,形成具有强烈致癌作用的亚硝胺。因此,亚硝酸盐常与恶名昭彰的氨相提并论,由于亚硝酸盐长期蓄积中毒,会使鱼、虾等抗病力降低,易招致各种病原菌的侵袭,故常被视为是鱼、虾的致病根源。然而,当亚硝酸在硝化菌的硝化作用下转变成硝酸后......阅读全文
硝化细菌的相关介绍
硝化细菌( Nitrifying bacteria ) 是一类好氧性细菌,属于纲α-变形杆菌纲和β-变形杆菌纲,包括亚硝酸菌和硝酸菌。属于自养型细菌,原核生物,是细菌中少数的生产者。 硝化细菌生活在有氧的水中或砂层中,只有同时满足了水分与氧气的供应,它们才能存活。硝化细菌最适宜在弱碱性的水中生
硝化细菌——在线生物毒性预警
近年来,硝化细菌已逐渐成为水产养殖界的热门话题,它在水产养殖中的重要性开始引起广泛的注意。可以说,迄今为止,在大规模、集约化的水产养殖模式中,如果没有硝化细菌参与其中的净水作用,想获得成功的养殖,是相当困难的。鱼、虾等水产动物吃、喝、排泄、生活、休息都是在水体中进行的,那么,如何管理水体的水质以便适
关于反硝化细菌的简介
反硝化细菌,是指一类能将硝态氮(NO-3N)还原为气态氮(N2)的细菌群,已知的有10科、50个属以上的种类具有反硝化作用。自然界中最普遍的反硝化细菌是假单胞菌属;其次是产碱杆菌属。 在土壤氧气不足时,将硝酸盐还原成亚硝酸盐,并进一步把亚硝酸盐还原为氨及游离氮的细菌。能将硝酸盐还原,并产生分子
硝化细菌分类的相关介绍
硝化细菌分类:硝化细菌属于自养型细菌,原核生物,包括两种完全不同的代谢群:亚硝酸菌属( nitrosomonas ) 及硝酸菌属( nitrobacter ),它们包括形态互异的杆菌、球菌和螺旋菌。亚硝酸菌包括亚硝化单胞菌属、亚硝化球菌属、亚硝化螺菌属和亚硝化叶菌属中的细菌。硝酸菌包括硝化杆菌属
生化球能培养硝化细菌吗
在新鱼缸中放入几只死虾,过几天再捞出,能够很快的培养出硝化细菌。这种方法就是使水质受到污染,水体中充满许多硝化细菌的食物,使它快速生长繁殖。就是这样培养的,但要注意的是,放的虾仁不用取出,虾仁自己会被细菌费解掉的,等到水混之后,再放消化细菌,几天后你就会发现水变清澈,第一次不要等水太清澈,再放一次虾
关于反硝化细菌的应用介绍
采用优良反硝化菌株经特殊工艺发酵而成。菌株反硝化能力强,能够以亚硝态氮和硝态氮作氮源,活化简单,繁殖迅速,作用效果显著,24小时可见效。针对养殖水体亚硝酸盐偏高的情况有特效;针对藻类过度繁殖的水体能够大量消耗氮素营养,切断藻类氮素营养,维护良好水色;菌株在溶氧充足及厌氧条件下均可生存并进行反硝化
概述反硝化细菌的分布用途
它们在氙气条件下,利用硝酸中的氧,氧化有机物而获得自身生命活动所需的能量。反硝化细菌广泛分布于土壤、厩肥和污水中。可以将硝态氮转化为氮气而不是氨态氮,与硝化细菌作用不完全相反。主要应用于污水处理,如景观水治理,城市内河治理,水产养殖处理等,其中水产养殖污水处理应用最为广泛。 反硝化细菌在养殖水
硝化细菌的培养与驯化技巧!
硝化菌的培养相对于异养菌来讲比较难,硝化菌的培养过程同时也是污泥的驯化过程。硝化细菌的培养应遵循循序渐进、有的放矢、精心控制的的原则,出水稳定后并逐步增加原水的进水量。 每次增加的进水量为设计进水量的5—10%,每增加一次应稳定2-3个周期或2天左右,发现系统内或出水指标上升应继续维持本次
硝化细菌的培养与驯化技巧!
硝化菌的培养相对于异养菌来讲比较难,硝化菌的培养过程同时也是污泥的驯化过程。硝化细菌的培养应遵循循序渐进、有的放矢、精心控制的的原则,出水稳定后并逐步增加原水的进水量。 每次增加的进水量为设计进水量的5—10%,每增加一次应稳定2-3个周期或2天左右,发现系统内或出水指标上升应继续维持本次
关于硝化细菌有害原因的介绍
第一步 鱼类的排泄物和未吃过的食物将会转变为氨(俗称阿摩尼亚);那是因为在这些东西里需要氧的细菌会令蛋白质分裂。而氨是有毒的。 第二步 生存于氧气中的硝化细菌,能把氨会转变为亚硝酸盐(NO2-);亚硝酸盐虽然仅有较小的毒性,但仍对鱼类有致命的毒害。 第三步 亚硝酸盐及后又被第二种硝化细
硝化细菌的培养与驯化技巧!
硝化菌的培养相对于异养菌来讲比较难,硝化菌的培养过程同时也是污泥的驯化过程。硝化细菌的培养应遵循循序渐进、有的放矢、精心控制的的原则,出水稳定后并逐步增加原水的进水量。 每次增加的进水量为设计进水量的5—10%,每增加一次应稳定2-3个周期或2天左右,发现系统内或出水指标上升应继续维持本次
简述反硝化细菌的生存需求
反硝化细菌如同腐生菌那样,从含碳化合物的广泛范围里氧化并建造自己的体内物质。在土壤中根的分泌物、死亡的植物根的残体及其分解的地上部,对这些微生物来说都是有机质的来源。但是它们也能够利用包含在土壤有机质富里酸组分中的易分解化合物。在自然条件下淹水时,反硝化作用引起土壤氮素的损失,是由有机质含量低的
硝化细菌的存活条件是什么?
硝化细菌的存活条件:硝化细菌的存活需要水分,还需要很高的氧气,所以只能生活在生化棉、生化球、玻璃环、陶瓷环等各种有微孔的滤材中。只有同时满足了水分与氧气的供应,它们才能存活。硝化细菌最适宜在弱碱性的水中生活,在温度达到25度左右时生长繁殖最快。它的繁殖不遵循分离定律和自由组合定律。
关于硝化细菌的生命活动的介绍
亚硝酸细菌(又称氨氧化菌),将氨氧化成亚硝酸。反应式: 2NH3+3O2→2HNO2+2H2O+158kcal(660kJ)。 硝酸细菌(又称亚硝酸氧化菌),将亚硝酸氧化成硝酸。反应式: HNO2+ 1/2 O2= HNO3, -⊿G= 18 kcal。 这两类菌能分别从以上氧化过程中获
如何才能提高硝化细菌的数量呢?
在养殖池中存在的有毒物质主要是氨及亚硝酸,这两种有毒的物质可由硝化细菌所消耗,并生成无毒性的硝酸,硝酸又是藻类的最佳氮肥,能被藻类所吸收及同化。因此,在养殖池中绝对不可缺少硝化细菌,如果硝化细菌缺乏,水中的氨含量将急速增加,使池水内的鱼虾有致死的危险。许多人通常不了解这个问题的重要性,以致于常遭
使用硝化细菌时的注意事项
水中有有机污染源,净水细菌是靠水中有机污染而存活的,如果因为水中没有污染源存在,它们就无法长期生存。因此,在新水阶段就加入细菌是否有效,是值得研讨的。 勿与消毒杀菌药剂同时使用 为了避免净水细菌被杀灭,切记勿与消毒杀菌药剂同时使用,如果必须使用杀菌药剂或治疗鱼病的药剂,需等药物使用至少一星期
反硝化细菌的世代周期是多少?
硝化菌泥龄应该在5~8天左右反硝化细菌泥龄应该在15天左右
反硝化细菌的基本信息介绍
反硝化细菌的生理类群包括广泛的腐生微生物组成。在通常氧化有机物质的条件下是依靠游离态O2,而在转为呼吸的嫌气的条件下,则依靠硝酸盐的结合态氧,硝酸盐是氢的受体。 反硝化细菌能生存于作氮源用的硝酸盐的介质中,它能利用这种化合物既可作为能量代谢,又可用于物质代谢。反硝化细菌在土壤氧气不足的条件下,
如何正确使用生化球培养硝化细菌
生化球在使用时,最好与机械式过滤系统结合成一体,不宜单独使用,即可在机械式过滤系统的滤程后面,加设一个「生化培养球箱」,内置生化培养球,仅让滤水由上自动滴流而下,然后再经由滴流过程中的硝化作用,来达到最完美的生物自净作用。如果将生化培养球单独使用,可能无法达到预期的效果,因为若直接把池水引入「生化培
关于硝化细菌的硝化使用的介绍
硝化细菌制剂是一种用于控制养殖池水自生氨浓度的处理剂,不仅使用相当方便,而且能发挥立竿见影的效果,故越来越受鱼友的欢迎。使用时可直接将该剂散布于池中,不久即能发挥除氨的功效。 市售硝化细菌制剂可分为活菌及休眠菌两种,渔友可依自己的需要选购使用。前者是利用细菌的活体制成,在显微镜的观察下,可看到
反硝化细菌的筛选及培养条件的研究
微生物在自然界氮素循环中起着重要作用,如固氮作用、氨化作用、硝化作用、反硝化作用( denitrification ) 。其中,硝化作用与反硝化作用维持自然界氨的平衡及氮的正常循环。 氨化作用由氨化细菌或真菌的作用将 有机氮分解成为氨与氨化合物, 硝化作用由亚硝酸盐 细菌和硝酸盐细菌将氨化合
硝化细菌的分解有机物的注意事项
首先先说说分解有机物,这个粗重的体力劳动可不是娇贵的硝化细菌能完成的,他是靠其它净水细菌完成的。在水生态循环系统中,若无其它异养性细菌存在,水中将到处充斥未被细菌分解的有机物,此种自我污染的水族环境一样使鱼儿无法生存其中。因此,它们常被视为是水质自净作用的先锋部队,其重要性并不亚于硝化细菌。这类
成都生物所研究获得异养硝化好氧反硝化细菌
传统的氨氮废水处理是通过自养硝化菌的硝化作用与异养反硝化菌的反硝化作用的组合工艺使氨氮转化为氮气,工艺冗长,能耗大,不仅增加了运行费用,还增加了运行管理和后续处理的难度。 11月5日,中科院成都生物所“一株异养硝化好氧反硝化细菌及其培养方法和用途”获国家知识产权局发明ZL。该
人工林氧化亚氮排放的微生物调控机制研究取得新进展
我国人工林种植面积居世界首位。人工林树种类型对温室气体N2O排放具有显著影响,并且N2O的排放呈现季节性变异,然而其中的微生物机制尚不清楚。 中国科学院亚热带农业生态研究所桃源农业生态试验站科研人员基于长期定位试验,揭示了油茶林和湿地松林不同季节N2O的排放规律、土壤性质及硝化和反硝化细菌数量
通过反硝化细菌和激光同位素分析仪测定溶解硝酸盐中...
通过反硝化细菌和激光同位素分析仪测定溶解硝酸盐中的δ15N和δ18OLGR氧化亚氮同位素分析仪测量水中硝酸盐成功案例:Analytical Chemistry 文章:Combining Denitrifying Bacteria and Laser Spectroscopy for Isotopic
成都生物所研究发现农田温室气体重要排放途径被低估
4月2日,《美国科学院院刊》(PNAS)在线刊登了关于土壤氧化亚氮和一氧化氮产生途径的最新研究成果Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO unde
简述自养微生物的原理和特征
1、基本原理 化能自养微生物由于它们在农业生产、能源开发、冶金、采矿等方面的实际应用及在产能代谢、分子遗传等理论研究方面的重要性,日益受到人们重视,本次实验以硝化细菌为代表,介绍化能自养微生物的分离与纯化。 2、主要特征 硝化细菌是化能自养菌类群中主要生理类群之一。包括亚硝化细菌和硝化细菌
亚热带所揭示硝化抑制剂对蔬菜土硝化和反硝化细菌的影响
氮肥是农业生产中施用最广的肥料之一,我国氮肥用量大但利用率低,平均利用率不到35%,远低于发达国家。由于氮肥使用不合理引发的环境富营养化、地下水硝酸盐超标等问题频发。另外,氮肥的大量施用还导致温室气体N2O 大量排放而加重全球气候变化。因此,对土壤氮素循环过程及调控机理研究一直受到
化能自养生物的合成作用
在自然界中,进行化能合成作用的细菌是普遍存在的。如硝化细菌是能够氧化无机氮化合物,从中获取能量,从而把 CO2 合成为有机物的一类细菌,硝化细菌合成有机物的过程表示如下:2NH3+3O2----2HNO2+2H2O+能量2HNO2+O2----2HNO3+能量6CO2+6H2O----C6H12O6
污水氨氮超标原因
(1)污泥负荷与污泥龄 生物硝化属低负荷工艺,F/M一般在0.05~0.15kgBOD/kgMLVSS·d。负荷越低,硝化进行得越充分,NH3-N向NO3--N转化的效率就越高。与低负荷相对应,生物硝化系统的SRT一般较长,因为硝化细菌世代周期较长,若生物系统的污泥停留时间过短,即SRT过短,污泥浓