454测序识别早期HIV耐药性突变

回顾性研究分析表明即使最低水平的耐药性突变也会导致早期治疗失败 2月17日《传染病杂志》(Journal of Infectious Disease)在线公布的一项研究称HIV病毒群体中少至1%的HIV耐药性突变会对临床结果产生显著影响。这篇论文由罗氏旗下454生命科学公司与耶鲁大学医学院研究人员合作完成,文章利用454测序系统对一个早期进行的临床试验FIRST Study(1)中获得研究样品进行分析,以鉴别之前无法检测到的耐药性HIV变异。这项研究由耶鲁大学医学院以及VA康涅狄格医疗保健体系(VA Connecticut Health Care System)的Michael Kozal医学博士领导完成,研究人员在研究目的药物治疗之前,对264个来自HIV感染个体的血液样品进行了盲回溯性(blinded-retrospectives)分析。研究人员利用可灵敏检测低频突变的Genome Sequen......阅读全文

分子识别的历史

自从1828年Friedrich Wöhler合成出尿素分子190年以来,分子化学已经发展到了前所未有的高度,尤其是在有机合成方面,人们利用精美的策略以及巧夺天工的效率和选择性,合成了大量结构复杂、功能多样的分子。而在1987年,Nobel化学奖授予了C.J.Pedersen、D.J.Cram和J.

分子识别的概念

分子识别(molecular recognition)是两个或以上的分子之间通过非共价键结合相互作用。

识别子的定义

中文名称识别子英文名称discriminator定  义(1)氨酰转移核糖核酸(tRNA)合成酶识别tRNA分子的一种假说:认为与识别位点有关的tRNA分子上存在共同位点或序列,如tRNA的3′端第四个核苷酸可行使初级识别作用。(2)与严紧应答有关的一段DNA序列。应用学科生物化学与分子生物学(一级

如何识别麻疹症状?

  前驱症状:麻疹的典型前驱症状包括高烧,通常在3天左右出现。发烧之后,患者可能会出现咳嗽、流涕、打喷嚏和食欲不振等呼吸道感染症状。  皮疹表现:麻疹特有的皮疹通常从面部开始,然后扩展到躯干和四肢。皮疹呈现为小红点,密集分布,可能逐渐融合成片。皮疹在按压时会褪色,且疹间皮肤颜色正常。  眼部症状:患

研究识别威士忌真假

  近日来自德国的研究团队提出了一个更加简便的鉴别威士忌真假的方法:使用荧光染料比较不同的饮料。  当威士忌开始在全球流行起来的时候,骗子也随之而来了。因为他们的伪劣假冒品很便宜,比如混合威士忌冒充纯麦苏格兰威士忌。但除了酿酒大师,很多人难以甄别。虽然,化学家们设计了各种方法甄别伪造威士忌。但这些方

分子识别的原理

分子识别的过程实际上是分子在特定的条件下通过分子间作用力的协同作用达到相互结合的过程。这其实也揭示了分子识别原理中的三个重要的组成部分,“特定的条件”即是指分子要依靠预组织达到互补的状态,“分子间相互作用力”即是指存在于分子之间非共价相互作用,而“协同作用”则是强调了分子需要依靠大环效应或者螯合效应

分子识别的历史

自从1828年Friedrich Wöhler合成出尿素分子190年以来,分子化学已经发展到了前所未有的高度,尤其是在有机合成方面,人们利用精美的策略以及巧夺天工的效率和选择性,合成了大量结构复杂、功能多样的分子。而在1987年,Nobel化学奖授予了C.J.Pedersen、D.J.Cram和J.

怎样识别阿米巴包囊?

阿米巴包囊是指阿米巴未成熟阶段。包囊多见于隐性感染者及慢性患者粪便中,呈圆形、5~20μm大小,成熟包囊具有4个核,是溶组织阿米巴的感染型,具有传染性。未成熟的包囊有单核和双核包囊,胞质中储存的营养物质拟染色体和糖原团。铁苏木素染色后,拟染色体呈棒状,糖原团被溶解,呈空泡状;碘液染色后拟染色体不着色

分子识别的原理

分子识别的过程实际上是分子在特定的条件下通过分子间作用力的协同作用达到相互结合的过程。这其实也揭示了分子识别原理中的三个重要的组成部分,“特定的条件”即是指分子要依靠预组织达到互补的状态,“分子间相互作用力”即是指存在于分子之间非共价相互作用,而“协同作用”则是强调了分子需要依靠大环效应或者螯合效应

分子识别的概念

分子识别(molecular recognition)是两个或以上的分子之间通过非共价键结合相互作用。

细胞识别的作用

细胞识别是指细胞对同种细胞、异种细胞、同源细胞、异源细胞的识别现象。细胞识别的作用部位位于细胞膜,细胞通过其表面的糖链参与识别作用。

免疫器官识别实验

实验材料 胎儿胸腺胸腺组织切片人脾组织切片人淋巴结切片鸡法氏囊实验步骤一、胸腺(Thymus)胸腺位于胸腔纵隔上部,胸骨后方。胸腺在胚胎期及出生后2 岁内生长很快,体积较大;2 岁后到青春期发育仍很快;但青春期后开始萎缩,逐渐由脂肪组织所代替,它在机体免疫功能的建立上占有重要地位。骨髓内有部分淋巴细

​细胞识别的定义

细胞识别是指一种生物细胞,同种和异种细胞的认识和鉴别。细胞的识别是通过膜表面的一种复杂的蛋白质也叫受体与胞外信号物质分子选择性地相互作用,导致胞内一系列生理、生化反应,如柱头表皮细胞对花粉粒的识别,亲缘关系近的能萌发、受精,远的则不能萌发; 白细胞能吞噬或杀死外来侵入的细菌或细胞等异物,而却能和同一

面部识别的机制

  一项研究提出,面部识别是由专门用于面部的大脑机制执行的,而且一套不同的机制则可能被用于处理一个人学会识别的其他对象。人们已经提出了面部识别机制的两个假说。面部特异性假说提出,面部识别机制仅由面部激发,而专门技能假说提出,个人熟悉或者获得了专门技能的其他视觉刺激也可能让面部识别机制发挥作用。对这个

如何识别冠心病?

  识别冠心病需要综合考虑症状、体征和医学检查结果。以下是一些常用的方法:  症状:冠心病的主要症状是胸痛或不适,通常是一种压迫、紧缩、烧灼或胀痛感,出现在胸骨后部或左侧胸部,可能向左臂、颈部、下颌、背部或上腹部放射。如果出现这些症状,应及时就医进行诊断和治疗。  体征:冠心病患者的体征可能包括心率

细胞识别的简介

  细胞识别是指一种生物细胞,同种和异种细胞的认识和鉴别。细胞的识别是通过膜表面的一种复杂的蛋白质也叫受体与胞外信号物质分子选择性地相互作用,导致胞内一系列生理、生化反应。[1]

什么叫细胞识别?

  细胞识别是指细胞对同种或异种细胞、同源或异源细胞的认识。多细胞生物有机体中有三种识别系统:抗原-抗体的识别、酶与底物的识别、细胞间的识别。第三类包括通过细胞表面受体或配体与其他细胞表面配体或受体的选择性相互作用,从而导致一系列的生理生化反应的信号传递。无论是那一种识别系统,都有一个共同的基本特性

解码“基因组学之父”桑格:测序,测序,测序

  “桑格当之无愧地被称为‘基因组学之父’,他的工作为人类读取和理解基因代码奠定了基础,彻底变革了生物学并极大促进了当今的医学发展。”、   有一天,65岁的英国生物化学家弗雷德里克·桑格(Frederick Sanger)突然停下手中的试验,转身走出实验室,宣布自己正式退休。那一年是1983

双脱氧法DNA测序实验——测序酶进行标记测序反应

在基本的双晩氧测序反应中,寡核苷酸引物退火于单链DNA摸板,在4种脱氧核糖核酸三磷酸存在时,引物为DNA聚合酶所延伸。反应混合物中也含有4种双脱氧核糖核苷三磷酸的其中一种,当它掺入到DNA的生长链时,可终止链的延伸。实验材料DNA试剂、试剂盒寡核苷酸引物测序酶终止混合液测序酶缓冲液焦磷酸酶混合液仪器

DNA测序自动测序法简介

  基因分析仪(即DNA测序仪),采用毛细管电泳技术取代传统的聚丙烯酰胺平板电泳,应用该公司ZL的四色荧光染料标记的ddNTP(标记终止物法),因此通过单引物PCR测序反应,生成的PCR产物则是相差1个碱基的3'末端为4种不同荧光染料的单链DNA混合物,使得四种荧光染料的测序PCR产物可在一

蛋白质测序的测序要求

  ●1 样品必需纯(>97%以上);  ●2 知道蛋白质的分子量;  ●3 知道蛋白质由几个亚基组成;  ●4 测定蛋白质的氨基酸组成;并根据分子量计算每种氨基酸的个数。  ●5 测定水解液中的氨量,计算酰胺的含量。

DNA测序454-焦磷酸测序简介

  该方法在油溶液包裹的水滴中扩增DNA(即emulsion PCR),每一个水滴中开始时仅包含一个包被大量引物的磁珠和一个链接到微珠上的DNA模板分子(控制DNA浓度出现的大概率事件)。将emlusion PCR产物加载到特制的PTP板上,板上有上百万个孔,每个微孔只能容纳一个磁珠。DNA Pol

从“基因测序仪”观“测序行业”!

基因测序仪:基因测序“皇冠上的明珠”  基因测序仪是测序产业链的起点也是关键环节,它为整个中下游测序服务提供最基本的测序支撑,同时也是壁垒最高的部分,处于基因测序产业价值链顶端。基因测序仪对于基因产业的重要性,如同发动机之于汽车行业,芯片之于电子通信行业,可谓是基因测序“皇冠上的明珠”。  到目前为

illumina测序是转录组测序吗

转录组测序属于测序应用的一种,Illumina测序属于测序技术的一种,两者没有包含于被包含关系,只能说Illumina测序可以做转录组测序。

DNA测序技术的测序的规律

生成互相独立的若干组带放射性标记的寡核苷酸,每组寡核苷酸都有固定的起点,但却随机终止于特定的一种或者多种残基上。由于DNA上的每一个碱基出现在可变终止端的机会均等,因此上述每一组产物都是一些寡核苷酸混合物,这些寡核苷酸的长度由某一种特定碱基在原DNA全片段上的位置所决定。在可以区分长度仅差一个核苷酸

测序技术及测序仪器的比较

自sanger测序技术发明以来,经人类基因组计划的促进,测序技术有了跨越式的发展,以实验方法与实验仪器的改进为标志,测序技术经历了三代的发展,同时测序技术向着高通量测序,单分子测序,低价格测序的方向发展,目前测序技术已成为分子生物学实验中的重要的实验手段。本文主要简单回溯了测序技术的发展历史,介绍了

基因测序

基因测序是一种新型基因检测技术,能够从血液或唾液中分析测定基因全序列,预测罹患多种疾病的可能性,个体的行为特征及行为合理。基因测序技术能锁定个人病变基因,提前预防和治疗。基因测序相关产品和技术已由实验室研究演变到临床使用,可以说基因测序技术,是下一个改变世界的技术

DNA测序

                自动测序法 双脱氧链末端终止法 非同位素银染 鸟枪法 Maxam-Gilbert化学修饰法             实验方法

DNA测序

实验方法原理 ABI  PRISM 310型基因分析仪(即DNA测序仪),采用毛细管电泳技术取代传统的聚丙烯酰胺平板电泳,应用该公司ZL的四色荧光染料标记的ddNTP(标记终止物法),因此通过单引物PCR测序反应,生成的PCR产物则是相差1个碱基的3'末端为4种不同荧光染料的单链DN

基因测序

第1代测序技术——荧光标记的Sanger法 在第一台全自动测序仪出现之前,使用最为广泛的测序方法就是 Sanger 在 20 世纪 70 年代中期发明的末端终止法测序技术。 Sanger 也因此获得 1980年的诺贝尔化学奖。 他的发明第一次为科研人员开启了深入研究生命遗传密码的大门。G1.1