DPI技术-“分子显微镜”
DPI(Dual Polarization Interferometry)双偏振极化干涉分析技术是自2002年以后发展起来的用于对相互作用的分子之间的实时相互作用行为进行定性定量测量研究的工具。通过对两相或者多相分子相互作用界面层的的密度、厚度和表面浓度进行实时的、动态的定量测量来了解分子结构(如聚合物或表活剂分子)与界面相互作用(如吸附)行为之间的关系。DPI技术广泛应用于日化和精细化工、蛋白质与药物研发、生物物理等研究领域。实时分析测量的另外一个优势在于可以对实验进行实时优化,在实验过程中可以随时改变实验条件如PH值、外来添加剂分子的疏水/亲水强度、极性等等,能够实时观察分子间相互作用强度和界面相互作用的变化。DPI技术的原理 双偏振极化干涉测量分析系统的理论基础为200年前Thomas Yuong的干涉实验,如图,当光源通过相邻的两道狭缝后会在狭缝后面发生干涉,在某一聚焦平面上产生明暗的条纹,同样如果用两片平板......阅读全文
DPI技术-“分子显微镜”
DPI(Dual Polarization Interferometry)双偏振极化干涉分析技术是自2002年以后发展起来的用于对相互作用的分子之间的实时相互作用行为进行定性定量测量研究的工具。通过对两相或者多相分子相互作用界面层的的密度、厚度和表面浓度进行实时的、动态的定量测量来了解分子结构(
DPI技术-“分子显微镜”
DPI(Dual Polarization Interferometry)双偏振极化干涉分析技术是自2002年以后发展起来的用于对相互作用的分子之间的实时相互作用行为进行定性定量测量研究的工具。通过对两相或者多相分子相互作用界面层的的密度、厚度和表面浓度进行实时的、动态的定量测量来了解分子结构(
能用扫描隧道显微镜观察分子图像
当然不行扫描隧道显微镜亦称为“扫描穿隧式显微镜”、“隧道扫描显微镜”,是一种利用量子理论中的隧道效应探测物质表面结构的仪器。它于1981年由格尔德·宾宁(G.Binning)及海因里希·罗雷尔(H.Rohrer)在IBM位于瑞士苏黎世的苏黎世实验室发明,两位发明者因此与恩斯特·鲁斯卡分享了1986年
原子力显微镜实空间分辨分子键
中科院国家纳米科学中心22日宣布,该中心科研人员在国际上首次“拍”到氢键的“照片”,实现了氢键的实空间成像,为“氢键的本质”这一化学界争论了80多年的问题提供了直观证据。这为科学家理解氢键的本质,进而改变化学反应和分子聚集体的结构奠定了基础,也为科学家在分子、原子尺度上的研究提供了更精确的方法。
涡轮分子泵分子束外延-MBE-与扫描隧道显微镜-STM-联用
Pfeiffer 分子泵应用于分子束外延 MBE 与扫描隧道显微镜 STM 联用系统 --分析生长晶体表面结构 分子束外延 MBE 是一种晶体生长技术, 将半导体衬底放置在超高真空腔体中, 和将需要生长的单晶物质按元素的不同分别放在喷射炉中, 由分别加热到相应温度的各元素喷射出的分子流能
混合显微镜可从三维测量生物分子
据每日科学近日报道,最近,美国爱荷华大学与国家能源部艾米实验室科学家合作,将光学显微与原子力显微技术结合起来,开发出一种能对单个生物分子进行三维测量的方法,准确性和精确性都达到纳米级别。最近出版的《纳米快报》上详细介绍了该技术。 现有技术只能从二维平面来测量单个分子,只有X轴和Y
能用扫描隧道显微镜观察分子图像吗?
当然不行 扫描隧道显微镜亦称为“扫描穿隧式显微镜”、“隧道扫描显微镜”,是一种利用量子理论中的隧道效应探测物质表面结构的仪器。它于1981年由格尔德·宾宁(G.Binning)及海因里希·罗雷尔(H.Rohrer)在IBM位于瑞士苏黎世的苏黎世实验室发明,两位发明者因此与恩斯特·鲁斯卡分
光学显微镜可以观察到分子结构吗
光学显微镜可以观察到分子结构吗?在光学显微镜下能不能观察到分子?水分子可以通过光学显微镜观察到吗?显微镜可以观察到蛋白质分子吗?可以观察到分子结构的是电子显微镜,现在电子显微镜的放大倍数能够达到1500万倍。在20世纪70年代的时候,透射式电子显微镜是当前zui流行的一种显微镜,它的分辨率约为0.3
光学显微镜可以观察到分子结构吗
在光学显微镜下能不能观察到分子? 水分子可以通过光学显微镜观察到吗? 显微镜可以观察到蛋白质分子吗? 可以观察到分子结构的是电子显微镜,现在电子显微镜的放大倍数能够达到1500万倍。 在20世纪70年代的时候,透射式电子显微镜是当前较流行的一种显微镜,它的分辨率约为0.3纳米
光学显微镜可以观察到分子结构吗
光学显微镜可以观察到分子结构吗? 在光学显微镜下能不能观察到分子? 水分子可以通过光学显微镜观察到吗? 显微镜可以观察到蛋白质分子吗? 可以观察到分子结构的是电子显微镜,现在电子显微镜的放大倍数能够达到1500万倍。 在20世纪70年代的时候,透射式电子显微镜是当前较流行的一种显
美国新型分子显微镜可准确检测艾滋病毒
艾滋病病毒原位分析技术再次取得突破。美国科学家在上周召开的国际艾滋病会议上,展示了他们开发的全新检测技术及检测结果,这个被称为“分子显微镜”的探针能够准确检测到艾滋病病毒在细胞内外的隐藏之地。 美国过敏性和传染性疾病研究所疫苗研究中心副主任瑞查得·普表示,这一分子显微镜新技术堪称神奇,它的超能力完
原位检测艾滋病毒,用一台分子显微镜即可!
艾滋病病毒原位分析技术再次取得突破。美国科学家在上周召开的国际艾滋病会议上,展示了他们开发的全新检测技术及检测结果,这个被称为“分子显微镜”的探针能够准确检测到艾滋病病毒在细胞内外的隐藏之地。 美国过敏性和传染性疾病研究所疫苗研究中心副主任瑞查得•普表示,这一分子显微镜新技术堪称神奇,它的超能
PNAS:DNA显微镜实现在细胞或组织样本中创建分子图像
近日,瑞典卡罗林斯卡学院的研究人员与芬兰阿尔托大学的同事们开发了一种新方法,实现了在细胞或组织样本中创建分子图像。这种方法是基于DNA片段的使用,因此被称为DNA显微镜。相关研究发表在《美国国家科学院院刊》(PNAS)上。https://doi.org/10.1073/pnas.18211781
关于原子力显微镜对生物分子间力谱曲线的观测
对生物分子表面的各种相互作用力进行测量,是原子力显微镜的一个十分重要的功能。这对于了解生物分子的结构和物理特性是非常有意义的。因为这种作用力决定两种分子的相互吸引或者排斥,接近或者离开,化学键的形成或者断裂,生物分子立体构像的维持或者改变等等。在分子间作用力的支配下,还同时支配着生物体内的各种生
原子力显微镜AFM在高分子材料中应用介绍
原子力显微镜,简称AFM,是一种能够研究物体表面结构的分析仪器,主要是通过对检测对象的表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来对物体的结构进行深入的研究。通过原子力显微镜扫描下的物体,能够以纳米级的分辨率来对物体的表面结构进行细化的分析与研究。 原子力显微镜在一定程度上弥补了普通扫
超高分辨率,新型化学显微镜可观察分子反应
教科书上的化学反应均以单分子形式进行概念描述,但实验中得到却是大量分子的平均结果。一瓶380毫升的水,约含有10的25次方个水分子,投入金属钠会产生激烈的反应。不妨试想,宏观可见的化学现象,具体到单个分子是怎样的表现?单分子实验是从本质出发解决许多基础科学问题的重要途径之一。近年来,虽已有单分子荧光
利用相差显微镜观察高分子合金的织态结构
相差显微镜是根据试样的什么性质进行观察的?相差显微镜的主要缺点是什么?当载玻片或盖玻片有厚薄不匀等缺陷时,为什么说对相差显微镜观察的影响比普通显微镜大?从传统上说,合金是指金属合金,即在一种金属元素基础上,加入其他元素,组成具有金属特性的新材料。所谓高分子合金是由两种或两种以上高分子材料构成的复合体
我科学家研发超级荧光分子开关-对光学显微镜意义重大
通过采用独特的分子设计,我国光电国家实验室朱明强教授课题组近日研发了一种超级荧光分子开关,将基于二芳基乙烯的荧光分子开关比提高了4个数量级,达到1万倍以上,响应速率也大幅度提高。并且,课题组还利用这种超级荧光分子开关的新特性,制作出具有超级光敏感和应用潜力的全光晶体管,这对我国研制新型超分辨率荧
不可见的生物分子显形:瞬态吸收显微镜实时观测血红素
生物分子的活体成像对于理解基础生物学过程至关重要,其原因不言而喻:要充分理解一个动态的生物学过程,动态地观察参与此过程的生物分子在细胞中的分布、转移和代谢必不可少。为此,生物学家采用了多种显微成像技术,其中荧光显微镜最为常用。通过荧光显微镜,生物学家可以观察到自发发射荧光的生物分子。荧光标记探针和绿
高分子领域常用的表征方法之电子显微镜(SEM)
电子显微镜是一种电子光学微观分析仪器,是将聚焦到很细的电子束打到试样上待测定的一个微小区域,产生不同的信息,加以收集、整理和分析,得出材料的微观形貌、结构和化学成分等有用的信息,如透射电镜(TEM)、扫描电镜(SEM)和电子探针分析(EPA)等。电子显微镜在分析研究高聚物时有以下应用:a.电镜可观察
美科学家开发出原位检测艾滋病病毒的分子显微镜
艾滋病病毒原位分析技术再次取得突破。美国科学家在上周召开的国际艾滋病会议上,展示了他们开发的全新检测技术及检测结果,这个被称为“分子显微镜”的探针能够准确检测到艾滋病病毒在细胞内外的隐藏之地。 美国过敏性和传染性疾病研究所疫苗研究中心副主任瑞查得·普表示,这一分子显微镜新技术堪称神奇,它的超能
用普通共聚焦显微镜实现超分辨率单分子荧光成像
传统的细胞及其内部分子显微观察通常使用荧光染料,然后再用不同分辨率的显微术照亮单个分子和与其互动的其他物质。如下图所示,普通共聚焦显微镜和超分辨率显微镜的精准度差异一目了然。(普通共聚焦显微镜观察图,比例尺10μm。图片来自发表文章DOI: 10.1038/s41467-017-00688-0)(随
Nature-Methods-:中国学者开发了新的干涉单分子定位显微镜
各种基于图像的中心位置估计(称为质心拟合)方法,如二维高斯拟合方法,在单分子定位显微镜(SMLM)中已被广泛用于精确确定每个荧光团的位置。然而,如何将单分子横向定位精度提高到分子尺度(< 2 nm)来实现高通量纳米结构成像仍然是一个挑战。图片来源:WANG Guoyan Wang and OU
分子探针还是分子铁锤?
这一期的《Nat. Chem. Biol.》有一篇题为“The promise and peril of chemical probes”的评论文章,二十几个作者都是化学生物领头人,其中包括Stuart Schreiber和Brian Shoichet这样的大腕。文章回顾了早期分子探针的缺陷并对
分子荧光和分子磷光
分子和原子一样,也有它的特征分子能级,分子内部的运动可分为价电子运动、分子内原子在平衡位置附近的振动和分子绕其重心的转动。因此分子具有电子能级、振动能级和转动能级。 分子从外界吸收能量后,就能引起分子能级的跃迁,即从基态跃迁到激发态,分子吸收能量同样具有量子化的特征,即分子只能吸收等于二个能级
激光扫描共聚焦显微镜在细胞及分子生物学的应用
激光扫描共聚焦显微镜应用照明针与检测孔共轭成像,有效抑制了焦外模糊成像并可对标本各层分别成像,对活细胞行无损伤的“光学切片”这种功能也被形象的称为“显微 CT”。CLSM 还可以对贴壁的单个细胞或细胞群的胞内、胞外荧光作定位、定性、定量及实时分析,并对胞内成分如线粒体、内质网、高尔基体、DNA、
量子点标记技术与原子力显微镜相结合的单分子相互作...
量子点标记技术与原子力显微镜相结合的单分子相互作用研究原子力显微镜(Atomic Force Microscopy, AFM)作为单分子研究工具,可用于生物分子相互作用研究。但是对于多蛋白复合体,AFM成像不能区分不同的蛋白质分子,需要在特定蛋白上引入特异性标记。而量子点作为纳米材料构成的硬
Nature:中国科学家-电子显微镜成功揭示T细胞分子结构
近日,一项刊登在国际杂志Nature上的研究报告中,来自中国哈尔滨工业大学和北京大学的科学家们通过研究成功利用单粒子低温电子显微镜(single-particle cryogenic electron microscopy)对人类T细胞受体复合物进行了研究。图片来源:NIAID T细胞主要扮演
激光扫描共聚焦显微镜在分子生物学基础研究的应用
激光扫描共聚焦显微镜应用照明针与检测孔共轭成像,有效抑制了焦外模糊成像并可对标本各层分别成像,对活细胞行无损伤的“光学切片”这种功能也被形象的称为“显微 CT”。CLSM 还可以对贴壁的单个细胞或细胞群的胞内、胞外荧光作定位、定性、定量及实时分析,并对胞内成分如线粒体、内质网、高尔基体、DNA、RN
岛津原子力显微镜在细胞及分子生物学的研究进展
原子力显微镜作为一种三维形貌观察工具,不仅具备超高分辨率,而且支持在液体环境下工作,是一种理想的生命科学/医学观测设备。除了形貌观察外,原子力显微镜还可以对多种表面属性进行定量观测。例如,基于力学测试的表面机械性能测试。这些性能为原子力显微镜应用于细胞和生物分子研究提供了技术基础。01 iPS干细胞