生物芯片(DNA微阵列)荧光扫描仪中的激光共聚...(三)
以下要介绍共聚焦扫描微阵列的工作原理,顾名思义,共聚焦扫描仪将视野中的两个聚焦点的影象装配为二维图象,工作过程如所示:平行的激光束通过光束分离器后进入目镜,目镜采集到部分球状散射的荧光释放光并使这些光成为平行的光束,此外还采集被反射的激光,这些激光的强度要比荧光强度大3-7倍。采集回来的光束再次通过光束分离器,光束分离器将大部分激光反射回激光源处,并允许大部分荧光束通过光束分离器,一面平面镜将荧光束反射到释放光栅处,光栅选择很窄范围波长的光通过,并将剩余的激光激发光全部反射回去。共聚焦的工作特点体现在探测目镜和开了一个针孔大的孔的光线挡板上,探测目镜将平行光聚集为很小直径的一束光之后,挡板上的小孔只允许聚焦的光线通过并将其余的光遮挡住。图5显示若发光点不在目镜焦点范围内,则光线将被探测目镜聚集于挡光板前,散射之后大部分光线被遮挡了,只有焦点范围内的光线才能有效地进入当光板的小孔被探测器检测到。对焦距范围的严格限制使得灰尘或近表面......阅读全文
生物芯片(DNA微阵列)荧光扫描仪中的激光共聚...(三)
以下要介绍共聚焦扫描微阵列的工作原理,顾名思义,共聚焦扫描仪将视野中的两个聚焦点的影象装配为二维图象,工作过程如所示:平行的激光束通过光束分离器后进入目镜,目镜采集到部分球状散射的荧光释放光并使这些光成为平行的光束,此外还采集被反射的激光,这些激光的强度要比荧光强度大3-7倍。采集回来的光束再次通过
生物芯片(DNA微阵列)荧光扫描仪中的激光共聚...(二)
释放光采集荧光由目镜的镜头来采集,该镜头聚焦于样品上并将一定区域内的光线收集到装置。收集的角度区域的大小非常关键,荧光释放是球形的,目镜对荧光的采集范围是决定仪器的采集效率关键指标之一。目镜采集光的角度由数值孔径来表示,图2表示了数值孔径与光采集效率之间的变化关系。当数值孔径为1.0时,目镜将收集到
生物芯片(DNA微阵列)荧光扫描仪中的激光共聚...(一)
生物芯片(DNA微阵列)荧光扫描仪中的激光共聚焦扫描技术所有的微阵列上的荧光须经荧光扫描装置来分析其上的荧光强度和分布,在这些装置中,激光共聚焦扫描仪具有优越的性能,能获取高质量的图像和数据,本文将分别介绍微阵列的相关特性和各种类型的微阵列扫描仪,激光共聚焦扫描仪的设计和关键特性,另外还将介绍一种已
生物芯片(DNA微阵列)荧光扫描仪中的激光共聚焦扫描技术
所有的微阵列上的荧光须经荧光扫描装置来分析其上的荧光强度和分布,在这些装置中,激光共聚焦扫描仪具有优越的性能,能获取高质量的图像和数据,本文将分别介绍微阵列的相关特性和各种类型的微阵列扫描仪,激光共聚焦扫描仪的设计和关键特性,另外还将介绍一种已商品化的激光共聚焦荧光扫描装置。 微阵列是由
主流生物芯片扫描仪比较
生物芯片技术是20世纪末发展起来的一项新技术。生物芯片是在微小面积上,利用微加工技术,并结合有关的化学合成技术制造而成的一种具有一定分子生物学检验功能的微型器件。分析和解释生物芯片上得到的信息,将在DNA结构与功能之间架起一道桥梁,进而推进生命科学的迅速发展。 目前,荧光标记是生物芯片信息采集
主流生物芯片扫描仪比较
生物芯片技术是20世纪末发展起来的一项新技术。生物芯片是在微小面积上,利用微加工技术,并结合有关的化学合成技术制造而成的一种具有一定分子生物学检验功能的微型器件。分析和解释生物芯片上得到的信息,将在DNA结构与功能之间架起一道桥梁,进而推进生命科学的迅速发展。目前,荧光标记是生物芯片信息采集中使用最
常见的芯片扫描仪有哪些?
1、安捷伦基因芯片-微阵列扫描仪 安捷伦DNA微阵列芯片扫描仪是一个具有48片装片器的扫描系统,它能够读取任何1" x 3"规格玻片微阵列(安捷伦与非安捷伦产品均可),并且可以利用安捷伦图像分析采集软件无缝连接进行图象分析。 扫描过程利用安捷伦SureScan High Resolution
常见的芯片扫描仪有哪些?
1、安捷伦基因芯片-微阵列扫描仪 安捷伦DNA微阵列芯片扫描仪是一个具有48片装片器的扫描系统,它能够读取任何1" x 3"规格玻片微阵列(安捷伦与非安捷伦产品均可),并且可以利用安捷伦图像分析采集软件无缝连接进行图象分析。 扫描过程利用安捷伦SureScan High Resolution技
生物芯片技术
一、 概述: 生物芯片这一名词最早是在80年代初提出的,主要指分子电子器件。美国海军实验室研究员Carter 等试图把有机功能分子或生物活性分子进行组装,想构建微功能单元,实现信息的获取、贮存、处理和传输等功能。用以研制仿生信息处理系统和生物计算机。产生了"分子电子学"同时取得了一些重要进展
生物芯片概述
实验概要 生物芯片这一名词最早是在80年代初提出的,主要指分子电子器件。美国海军实验室研究员Carter 等试图把有机功能分子或生物活性分子进行组装,想构建微功能单元,实现信息的获取、贮存、处理和传输等功能。用以研制仿生信息处理系统和生物计算机。产生了"分子电子学"同时取得了一些重
生物芯片扫描仪的选购
生物芯片是指通过微缩技术将生物学研究中诸多不连续的分析过程集成于玻璃片、硅片等固相载体上,使这些分析过程连续化、集约化、微型化和高度信息化。生物芯片按构建方式可以分为矩阵式和微流控芯片等。将大量靶基因或寡核苷酸片段有序地、高密度地排列在固相载体上而构成矩阵式芯片。生物芯片可广泛应用于: 药物筛选
芯片扫描仪的分类
芯片扫描仪也叫生物芯片扫描仪,芯片扫描仪是生物芯片能否得到广泛应用的关键器件,它是利用强光照明生物芯片激发荧光,并用探测器探测荧光强度,以获取生物芯片信息。 芯片扫描仪主要有激光芯片扫描仪和CCD芯片扫描仪两种工作方式。灵敏度和分辨率是芯片扫描仪最主要的两项技术指标。灵敏度决定了芯片扫描仪能够
博奥领衔起草的4项生物芯片标准通过审定
国家食品药品监督管理局日前审定通过了“体外诊断用蛋白质微阵列芯片”、“生物芯片用醛基基片”、“体外诊断用DNA微阵列芯片”和“激光共聚焦扫描仪”等4项生物芯片行业标准,该标准由博奥生物有限公司暨生物芯片北京国家工程研究中心领衔负责起草,并将于2011年6月1日起施行。 中国工程院院士、生物
浅述激光共聚焦芯片扫描仪
激光共聚焦芯片扫描仪工作时,利用激光照射生物芯片激发荧光,荧光收集物镜收集荧光,通过二色分光镜,经窄带滤光片滤光后,汇集在探测针孔上,由光电倍增管探测,最后经电路放大、转换传到计算机进行处理,获取其中包含的生物信息。 激光共聚焦芯片扫描仪采取的扫描方式是:光源固定即光束保持不变、荧光探测器固定
基因芯片技术的原理
基因芯片又称DNA芯片(DNA chip )或DNA微阵列(DNA microarray)。其原理是采用光导原位合成或显微印刷等方法将大量特定序列的探针分子密集、有序地固定于经过相应处理的硅片、玻片、硝酸纤维素膜等载体上,然后加入标记的待测样品,进行多元杂交,通过杂交信号的强弱及分布,来分析目的
DNA微阵列技术的主要流程:
①芯片的制备:DNA芯片的制备方法有光引导原位合成法、化学喷射法、接触式点涂法、原位DNA控制合成、非接触微机械印刷法TOPSPOT和软光刻复制等。已能将40万种不同的DNA分子放在1 cm2的芯片上。②样品的制备:包括样品DNA或RNA的分离提纯和用PCR技术对靶基因片段扩增以及对靶基因标记。③杂
DNA微阵列技术的主要流程
DNA微阵列技术的主要流程:①芯片的制备:DNA芯片的制备方法有光引导原位合成法、化学喷射法、接触式点涂法、原位DNA控制合成、非接触微机械印刷法TOPSPOT和软光刻复制等。已能将40万种不同的DNA分子放在1 cm2的芯片上。②样品的制备:包括样品DNA或RNA的分离提纯和用PCR技术对靶基因片
DNA微阵列技术的主要流程
DNA微阵列技术的主要流程:①芯片的制备:DNA芯片的制备方法有光引导原位合成法、化学喷射法、接触式点涂法、原位DNA控制合成、非接触微机械印刷法TOPSPOT和软光刻复制等。已能将40万种不同的DNA分子放在1 cm2的芯片上。②样品的制备:包括样品DNA或RNA的分离提纯和用PCR技术对靶基因片
微阵列芯片的应用
微阵列芯片是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等生物样品有序地固化于支持物(如玻片、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子反应,通过特定的仪器,比如激光扫描仪对反应信号的强度进行快速、并行、高效地检测分
生物芯片入门(一):生物芯片及应用简介
生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或
生物芯片北京国家工程研究中心:十年磨砺-用“芯”创造
2010年5月6日,中共中央总书记、国家主席胡锦涛陪同朝鲜劳动党总书记、国防委员会委员长金正日参观博奥生物有限公司。新华社供图 2008年12月27日,中共中央政治局常委、国务院总理温家宝来到北京中关村科技园区,看望广大科技工作者,就园区的创新发展问题进行专题调研。这
微阵列芯片的应用
微阵列芯片是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等生物样品有序地固化于支持物(如玻片、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子反应,通过特定的仪器,比如激光扫描仪对反应信号的强度进行快速、并行、高效地检测分
基因芯片的必备知识和操作流程
基因芯片 技术的诞生为生物技术工作人员打开了一道科研的便利之门,曾被评为1998年年度十大科技进展之一。本文对基因芯片的实验原理、技术基础、分类、用途、操作主要环节等内容做详细的介绍。 1.基本原理和技术基础 基因芯片以DNA杂交 为基本原理,基于A和T、G和C的互补关系。它是在探针
基因芯片的必备知识和操作流程
基因芯片 技术的诞生为生物技术工作人员打开了一道科研的便利之门,曾被评为1998年年度十大科技进展之一。本文对基因芯片的实验原理、技术基础、分类、用途、操作主要环节等内容做详细的介绍。 1.基本原理和技术基础 基因芯片以DNA杂交 为基本原理,基于A和T、G和C的互补关系。它是在探针的基础上
什么是生物芯片微阵列技术
生物芯片技术是通过缩微技术,根据分子间特异性地相互作用的原理,将生命科学领域中不连续的分析过程集成于硅芯片或玻璃芯片表面的微型生物化学分析系统,以实现对细胞、蛋白质、基因及其它生物组分的准确、快速、大信息量的检测。按照芯片上固化的生物材料的不同,可以将生物芯片划分为基因芯片、蛋白质芯片、多糖芯片和神
DNA微阵列的简介
DNA微阵列(DNA microarray)又称DNA阵列或DNA芯片,比较通俗的名字是基因芯片(gene chip)。是一块带有DNA微阵列(micorarray)涂层的特殊玻璃片,在数平方厘米之面积上安装数千或数万个核酸探针,经由一次测验,即可提供大量基因序列相关资讯。它是基因组学和遗传学研
三维激光扫描仪简介
三维激光扫描技术是国际上近期发展的一项高新技术。随着三维激光扫描仪在工程领域的广泛应用,这种技术已经引起了广大科研人员的关注。通过激光测距原理(包括脉冲激光和相位激光),瞬时测得空间三 维坐标值的测量仪器,利用三维激光扫描技术获取的空间点云数据,可快 速建立结构复杂、不规则的场景的三维可视化
金标纳米粒子应用于生物芯片研究获进展
近日,中国科学院长春应用化学研究所王振新课题组在金标纳米粒子的生物芯片应用研究方面取得重要进展,相关成果发表在美国《分析化学》和荷兰《生物传感器和生物电子》上。 生物芯片技术是上世纪90年代以来发展起来的一种高通量分析技术,在过去的十多年中,DNA生物芯片获得了空前发展,被广泛应用到基因组
基因芯片技术知识概要
生物科学正迅速地演变为一门信息科学。最明显的一个例子就是目前正在进行的HGP(human genome project),最终要搞清人类全部基因组的30亿左右碱基对的序列。除了人的遗传信息以外,还有其它生物尤其是模式生物(model organism)已经或正在被大规模测序,如大肠杆菌、啤酒酵母、秀
共聚焦扫描仪的原理
激光扫描共聚焦扫描仪的主要原理是利用激光扫描束通过光栅针孔形成点光源,在荧光标记标本的焦平面上逐点扫描,采集点的光信号通过探测针孔到达光电倍增管(PMT),再经过信号处理,在计算机监视屏上形成图像。对于物镜焦平面的焦点处发出的光在针孔处可以得到很好的会聚,可以全部通过针孔被探测器接收。而在焦平面上下