新一代高性能基因编码的钙离子探针jGCaMP7系列
CRISPR被称为“生物科学范畴的游戏规则改动者”,现已开展成为该范畴最炙手可热的研讨工具之一。不过,传统的CRISPR-Cas基因组编辑系统,要应用一个导游RNA将细菌蛋白质靶向定位到需求改动的特定基因组位点。6月12日,英国《自然》杂志在线发表的论文称,美国科学家团队开发出一种完整可编辑的CRISPR-Cas基因组编辑系统,其能够介导DNA精准插入基因组。该办法无需在靶DNA中产生双链断裂,防止了由此招致的遗传编码的非预期改动。 CRISPR-Cas系统又称“基因魔剪”,自问世以来疾速成为生物科学范畴的游戏规则改动者。不过,传统的CRISPR-Cas基因组编辑系统,要应用一个导游RNA将细菌蛋白质靶向定位到需求改动的特定基因组位点。这种系统经过形成DNA的双链断裂来插入新的遗传信息。但是修复双链断裂所需的机制,有时分很容易出错,这简直成为障碍CRISPR-Cas技术开展的绊脚石。 此次,美国哥伦比亚大学科学家......阅读全文
新一代高性能基因编码的钙离子探针jGCaMP7系列
CRISPR被称为“生物科学范畴的游戏规则改动者”,现已开展成为该范畴最炙手可热的研讨工具之一。不过,传统的CRISPR-Cas基因组编辑系统,要应用一个导游RNA将细菌蛋白质靶向定位到需求改动的特定基因组位点。6月12日,英国《自然》杂志在线发表的论文称,美国科学家团队开发出一种完整可编辑的C
新型高性能基因编码的环磷酸腺苷荧光探针
近日,中国科学院深圳先进技术研究院生物医学与健康工程研究所生物医学光学与分子影像研究中心研究员储军课题组在《自然-通讯》(Nature Communications)上,发表了题为A high-performance genetically encoded fluorescent indicat
钙离子荧光探针:比值型荧光探针
前面我们介绍了荧光指示剂法可以将Ca2+检测的实验与其他技术结合使用,如可以与流式细胞仪、荧光分光光度计、或者荧光显微镜进行联合检测 。紫外光型主要包括Quin-2、Indo-1、Fura-2等,数量较少,可见光型数目较多,包括Fluo-3、钙黄绿素、Rhod-2等。荧光指示剂根据测光原理和数据
钙离子荧光探针类型大盘点
钙离子在许多生理过程中起着复杂的作用。例如,细胞内钙离子在促进神经元从神经元中释放神经递质的信号转导途径中必不可少,并参与所有肌肉细胞收缩所需的机制。细胞离子浓度受被动和主动离子通道和泵的调节。离子通道和泵的故障可能导致离子浓度调节不当,从而产生不利于正常细胞功能的不利条件。钙离子浓度研究领域中常使
新型探针!轻松检测果蝇的基因编码
在国家自然科学基金面上项目(项目编号31671118)等的资助下,北京大学李毓龙研究组在神经递质荧光探针的开发方面取得重要进展,先后报道了可基因编码的乙酰胆碱荧光探针和多巴胺荧光探针的研究成果。其中乙酰胆碱荧光探针以“A genetically encoded fluorescent acety
AAT最亮的钙离子荧光探针Calbryte的多种运用
Calbryte 系列染料与常见的Fluo-3和Fluo-4染料相比具有几个关键优势 。Calbryte 系列染料能产生更亮的信号,具有更优秀的信噪比,并大大增强了细胞保留能力。这些特点使Calbryte 系列染料成为传统的钙指示剂的绝佳替代品。 图1.在Fluo-4,AM(左)和Calbryte
基因探针基因探针的基本介绍
基因探针基因探针(probe)就是一段与目的基因或DNA互补的特异核苷酸序列,它可以包括整个基因,也可以仅仅是/基因的一部分;可以是DNA本身,也可以是由之转录而来的RNA。 1.探针的来源 DNA探针根据其来源有3种:一种来自基因组中有关的基因本身,称为基因组探针(genomic probe
离子探针原理
离子探针(IMA)的基本原理是,用高能负氧离子轰击样品表面,测定被飞溅活化出来并发生电离的原子(即离子)的同位素组成,以获得年龄。为一种得到迅猛发展的新型质谱计,它具有许多其他测年方法所没有的优点:不需要化学处理;具有高的分辨率,可同时获得几组年龄以确定被测对象同位素体系是否封闭,有无铅丢失;可对样
离子探针方法
离子探针方法是将质谱测定技术与离子发射显微镜技术相结合的现代仪器分析方法。能提供一般质谱分析所不能提供的试样微区质谱。由于它能对固体物质作微区、微量及深度成分分析,在某些条件下检测灵敏度可达ppb数量级,因此被广泛地应用于半导体、冶金、地质和生物研究等部门。其原理是利用聚焦的高能一次离子束轰击试样表
化学所在高性能锂离子电池电极材料研究方面取得系列进展
为了适应消费电子、电动汽车和储能领域的发展,需要开发更高能量密度、功率密度、循环次数和安全性的锂离子电池。其中高容量、高倍率性能和循环稳定的电极材料的开发是关键,也是研究热点和难点。 在国家自然科学基金委、科技部和中国科学院的支持下,化学研究所分子纳米结构与纳米技术院重点实验室
宁波材料所在高性能锂离子电池负极材料领域取得系列进展
锂离子电池与铅酸、镍镉、镍氢等电池相比,由于其较高的能量密度、较长的使用寿命、较小的体积、无记忆效应等特点,成为现今能源领域研究的热点之一。负极材料是锂离子电池的关键组件之一,其作为锂离子的受体,在充放电过程中实现锂离子的嵌入和脱出。因此,负极材料的好坏直接影响锂离子电池的整体性能。目前,商用
新型碳量子点荧光探针或将问世-细胞钙离子检测迎利好
钙离子调节多种重要的细胞功能 钙是维持生物体生命活动的必需元素之一,在骨骼生长、肌肉活动、酸碱平衡、神经活动中起着不可替代的作用。 正常状态下,一位健康成年人体内平均钙含量为1500g,大约占其体重的1.5-2%。绝大部分人体钙存在于骨骼和牙齿中,剩下的部分存在于软组织和体液中。作为通用的第
基因探针的简介
基因探针,即核酸探针,是一段带有检测标记,且顺序已知的,与目的基因互补的核酸序列(DNA或RNA)。基因探针通过分子杂交与目的基因结合,产生杂交信号,能从浩瀚的基因组中把目的基因显示出来。根据杂交原理,作为探针的核酸序列至少必须具备以下两个条件:①应是单链,若为双链,必须先行变性处理。②应带有容
我国科研人员开发出新型高灵敏钙信号荧光蛋白探针
近日,北京师范大学认知神经科学与学习国家重点实验室教授章晓辉团队、北师大生命科学学院教授王友军团队与中国科学技大学教授唐爱辉团队合作开发构建了一类新型的检测钙信号的荧光蛋白探针“尼莫”(NEMO),该探针具有更强和更精准的定量测定性能。近日,该成果在线发表于期刊《自然-方法》。生命体的许多活动都离不
离子钙与微量元素钙
离子钙是生理活性钙,它比总钙更能反映出体内钙的代谢状态。 微量元素里的钙应是总钙。 血液离体后CO2会很快丢失,使pH值升高,导致结合钙增加,离子钙测定偏低,经过统计学处理,标本放置3 h后再离心测定(即二组测定),钙值偏低,症状组P
离子钙的决定水平
参考值 1.13~1.32mmol/L 决定水平 临床意义及措施 0.37mmol/L 离子钙水平低于此值,常出现腕掌痉挛、手足抽搐、低血压、心律失常等症状,最终可致心脏停止跳动,必须立即采取合适的治疗措施。 3.3mmol/L 测定值在此水平,将导致严重的和持续的心律功能不良
应加速研制新一代分子探针
近日,香山科学会议第554次学术讨论会在北京召开。此次会议以“医学分子探针关键技术”为主题。与会专家认为,目前,我国对进口医学分子探针尚存依赖,为打破这一局面,应加速研制高特异性、高靶向性、智能化、高灵敏度的新一代分子探针。 为了更全面、更完整地获取生物体解剖结构水平、功能代谢水平和细胞分子水
深圳先进院团队开发出新型荧光探针
论文截图9月12日,中国科学院深圳先进技术研究院医工所生物医学光学与分子影像研究中心储军课题组的最新成果发表于《自然—通讯》。研究人员研发了在活细胞内具有12倍荧光变化的高性能基因编码的cAMP绿色荧光探针(命名为G-Flamp1)。该研究结合显微成像和光纤记录等技术,实时高灵敏监测了果蝇和小鼠等模
离子钙与微量元素钙的区别
血中离子钙一般占总钙量的46%。离子钙中一部分为活性离子钙,此部分有生理活性。另一部分为非活性离子,这部分离子钙在活化前无生理作用。一般情况下,血清总钙与离子钙水平是一致的。在某些特殊情况下二者会发生分离现象。如酸中毒时由于血pH值下降,与 小分子阴离子结合减少,蛋白结合也有一定程度的减少,钙
离子钙与微量元素钙的区别
血中离子钙一般占总钙量的46%。离子钙中一部分为活性离子钙,此部分有生理活性。另一部分为非活性离子,这部分离子钙在活化前无生理作用。一般情况下,血清总钙与离子钙水平是一致的。在某些特殊情况下二者会发生分离现象。如酸中毒时由于血pH值下降,与 小分子阴离子结合减少,蛋白结合也有一定程度的减少,钙离子增
北京离子探针中心离子探针质谱仪器研发进入攻坚阶段
2010年1月16-17日,由北京离子探针中心主办的“2009北京SHRIMP成果报告会”在京隆重举行。中国科学院多位院士、政府相关部门负责人以及来自全国各地的地学界同仁等约100人出席了开幕式。自2002年起,一年一度的“北京SHRIMP成果交流会”已经成为中国地学界同仁们进行学术交
如何检验钙离子
如是液体样品,加入草酸铵溶液,发生浑浊即含钙离子。
离子选择电极法测定离子钙
【原理】钙离子选择电极膜与钙离子结合,如果钙离子在膜内、外两面分布不匀,将产生一个跨膜电位,因为电极内溶液离子钙浓度是恒定的,所以膜电位的变化与样品中离子钙浓度成正比。【操作】由于各种型号的离子钙分析仪结构不同,有的是专用型(只测定离子钙),有的是组合型,可同时测定钾离子、钠离子、氯离子或pH 值,
新型XPE系列天平——更强技术,更高性能!
梅特勒-托利多推出的新型XPE系列天平涵盖了微量分析天平,分析天平,精密天平,以及使用Quantos粉末和液体自动加样模块。凭借最新的静电消除、智能秤盘以及状态指示灯技术,新型XPE天平可以保证测量结果的稳定性和合规性,帮助客户轻松实现无忧测量。 如何处理静电是分析天平和微量天平所要面对的一大
基因探针标记的介绍
探针是能与特异靶分子反应并带有供反应后检测的合适标记物的分子。利用核苷酸碱基顺序互补的原理,用特异的基因探针即识别特异碱基序列的有标记的一段单链DNA(或RNA)分子,与被测定的靶序列互补,以检测被测靶序列的技术叫核酸探针技术。探针制备就是将目的基因进行标记。特异性探针有三种形式——cDNA、R
基因探针的来源介绍
基因探针的来源 DNA探针根据其来源有3种:一种来自基因组中有关的基因本身,称为基因组探针(genomic probe);另一种是从相应的基因转录获得了mRNA,再通过逆转录得到的探针,称为cDNa 探针(cDNa probe)。与基因组探针不同的是,cDNA探针不含有内含子序列。此外,还可在体外人
简述基因探针的制备
进行分子突变需要大量的探针拷贝,后者一般是通过分子克隆(molecular cloning)获得的。克隆是指用无性繁殖方法获得同一个体、细胞或分子的大量复制品。当制备基因组DNA探针前,应先制备基因组文库,即把基因组DNA打断,或用限制性酶作不完全水解,得到许多大小不等的随机片段,将这些片段体外
基因探针的标记方法
为了确定探针是否与相应的基因组DNA杂交,有必要对探针加以标记,以便在结合部位获得可识别的信号,通常采用放射性同位素32P标记探针的某种核苷酸α磷酸基。但近年来已发展了一些用非同位素如生物素、地高辛配体等作为标记物的方法。但都不及同位素敏感。非同位素标记的优点是保存时间较长,而且避免了同位素的污染。
关于基因探针的简介
基因探针,即核酸探针,是一段带有检测标记,且顺序已知的,与目的基因互补的核酸序列(DNA或RNA)。基因探针通过分子杂交与目的基因结合,产生杂交信号,能从浩瀚的基因组中把目的基因显示出来。根据杂交原理,作为探针的核酸序列至少必须具备以下两个条件: ①应是单链,若为双链,必须先行变性处理。 ②
基因探针的制备-方法
进行分子突变需要大量的探针拷贝,后者一般是通过分子克隆(molecular cloning)获得的。克隆是指用无性繁殖方法获得同一个体、细胞或分子的大量复制品。当制备基因组DNA探针进,应先制备基因组文库,即把基因组DNA打断,或用限制性酶作不完全水解,得到许多大小不等的随机片段,将这些片段体外重组