在单自旋体系中观测到宇称时间对称性破缺
完结量子系统调控是人类知道和利用微观世界的重要途径,关于量子核算与量子传感至关重要。自旋作为重要的量子调控系统,如安在单自旋系统中完结非厄米哈密顿量的操控是量子调控领域中一个严重应战。 量子调控与量子信息要点专项项目负责人、中国科学技术大学杜江峰院士领衔的研讨团队面向这一应战,建立了在量子系统中完结基于非厄米哈密顿量的量子调控普适理论。 项目组通过将金刚石中一个氮-空位缺点中的电子自旋作为系统比特,一个核自旋作为辅佐比特,完结了宇称时间对称哈密顿量,进而通过调理哈密顿量的参数,观测到对称性破缺相变进程。该研讨通过对金刚石量子比特的高精度量子操控,初次在单自旋系统中观测到宇称时间对称性破缺,为进一步探究非厄米哈密顿量奇异物理特性奠定了重要根底,研讨成果发表在《科学》上。 文章链接:仪器设备网 https://www.instrumentsinfo.com/technology/show-819.html ......阅读全文
在单自旋体系中观测到宇称时间对称性破缺
完结量子系统调控是人类知道和利用微观世界的重要途径,关于量子核算与量子传感至关重要。自旋作为重要的量子调控系统,如安在单自旋系统中完结非厄米哈密顿量的操控是量子调控领域中一个严重应战。 量子调控与量子信息要点专项项目负责人、中国科学技术大学杜江峰院士领衔的研讨团队面向这一应战,建立了在量子
科学家在单自旋体系中观测到三阶奇异线
中国科学技术大学中国科学院微观磁共振重点实验室杜江峰院士、荣星教授等人在单自旋体系中系统研究了对称性与高阶非厄米奇异点结构的关系,并成功观测到了一类高阶非厄米奇异点结构。1月15日,该研究成果在线发表于《自然-纳米技术》。不同对称性下的非厄米体系的能谱及奇异点结构。中国科大供图 非厄米物理特别
中国科大在单自旋量子调控研究中取得进展
中国科学院院士、中国科学技术大学教授杜江峰领导的中科院微观磁共振重点实验室研究团队建立了在量子系统中实现基于非厄米哈密顿量的量子调控普适理论,并通过对金刚石量子比特的高精度量子操控,首次在单自旋体系中观测到宇称时间对称性破缺。该研究成果以Observation of parity-time sy
中国科学技术大学发表10篇CNS,全球学术排名表现出色
Science:中国科学技术大学在量子力学再取新突破 实现对量子系统的调控是人类认识并利用微观世界规律的必然诉求,也是诸多前沿科学领域的核心要素。自旋作为一种重要的量子调控研究体系,在世界各国的量子计划中均被列为重点研究对象。开展单自旋量子调控研究有助于人们在更深层次上认识量子物理的基础科学问题,
华中科技大学祝雪丰副教授团队Science发表最新研究成果
4月12日,《科学》(Science)杂志在线发表了华中科技大学物理学院和创新研究院祝雪丰副教授与美国斯坦福大学和新加坡国立大学的合作研究成果:《扩散系统中反宇称时间对称性》(Anti-parity-time symmetry in diffusive systems)。华中科技大学物理学院20
研究利用对称性破缺抑制卫星液滴
关于液滴撞击到固体表面的回弹行为研究,在喷墨印刷、定向输运、自组装与能量收集等领域具有重要意义。表面浸润性图案化可以精准调控液滴的铺展和回缩行为,但该过程通常伴随卫星液滴的产生,对于喷墨打印等应用具有较大影响,如何精确控制卫星液滴的产生仍是挑战。 近年来,中国科学院化学研究所绿色印刷实验室宋延
研究利用对称性破缺抑制卫星液滴
关于液滴撞击到固体表面的回弹行为研究,在喷墨印刷、定向输运、自组装与能量收集等领域具有重要意义。表面浸润性图案化可以精准调控液滴的铺展和回缩行为,但该过程通常伴随卫星液滴的产生,对于喷墨打印等应用具有较大影响,如何精确控制卫星液滴的产生仍是挑战。 近年来,中国科学院化学研究所绿色印刷实验室宋延林课
研究利用对称性破缺抑制卫星液滴
关于液滴撞击到固体表面的回弹行为研究,在喷墨印刷、定向输运、自组装与能量收集等领域具有重要意义。表面浸润性图案化可以精准调控液滴的铺展和回缩行为,但该过程通常伴随卫星液滴的产生,对于喷墨打印等应用具有较大影响,如何精确控制卫星液滴的产生仍是挑战。 近年来,中国科学院化学研究所绿色印刷实验室宋延
我国学者成功观测到一类高阶非厄米奇异点结构
原文地址:http://news.sciencenet.cn/htmlnews/2024/1/516114.shtm 16日记者从中国科学技术大学获悉,该校中国科学院微观磁共振重点实验室杜江峰、荣星等人,在单自旋体系中系统研究了对称性与高阶非厄米奇异点结构的关系,并成功观测到了一类高阶非厄米奇异
科学家首次在室温里德堡气体中观测到“时间晶体”
本报北京7月18日电 记者邓晖从清华大学获悉,该校物理系尤力教授团队与北京量子信息科学研究院等国内外研究机构合作,首次在强相互作用的室温里德堡气体中,观测到了持续稳定的“时间晶体”信号。相关研究成果日前发表在《自然·物理》杂志上。2012年,诺贝尔物理学奖得主弗朗克·维尔切克首次预言了“时间晶体”的
过渡金属硫化物中伊辛超导电性研究获系列新进展
二维层状过渡金属硫化物MX2(M代表Mo,Nb,W;X代表S,Se,Te)中的强自旋-轨道耦合作用与结构的多样性赋予这类材料许多新奇的物理性质,如在少数层1Td相的WTe2中观测到量子自旋霍尔效应,在少数层2H相的MoS2与NbSe2中观测到伊辛超导电性等。这些发现使得MX2材料成为当前凝聚态物
科学家观测到里德堡原子高阶和分数离散时间晶体
中国科学技术大学中国科学院量子信息重点实验室教授丁冬生课题组在里德堡原子驱动耗散系统中观察到了高阶和分数离散时间晶体。11月10日,相关研究成果发表于《自然—通讯》。 自发对称性破缺是解释物质相变的重要机制,比如,空间上的平移对称性的自发破缺,使得物体形成了空间上的有序结构,也就是空间晶体。同
科学家观测到里德堡原子高阶和分数离散时间晶体
中国科学技术大学中国科学院量子信息重点实验室教授丁冬生课题组在里德堡原子驱动耗散系统中观察到了高阶和分数离散时间晶体。11月10日,相关研究成果发表于《自然—通讯》。自发对称性破缺是解释物质相变的重要机制,比如,空间上的平移对称性的自发破缺,使得物体形成了空间上的有序结构,也就是空间晶体。同样,研究
复旦大学在二维磁性材料非线性光学研究取得重要进展
近年来,二维磁性材料在国际上成为备受关注的研究热点。它们能将自发磁化保持到单原胞层厚度,为人们理解和调控低维磁性提供了新的研究平台,也为二维磁性与自旋电子学器件的研发开辟了新的方向,在新型光电器件、自旋电子学器件等方面有着重要应用价值。 尽管二维磁性材料的铁磁性质已有研究,但反铁磁态由于不具
潘建伟等首次在超冷原子体系中观测到任意子激发
记者从中国科学技术大学获悉,该校潘建伟教授及其同事苑震生、陈宇翱等人近期在国际上首次通过量子调控的方法,在超冷原子体系中发现了拓扑量子物态中的准粒子——任意子,并证实了任意子的分数统计特性,向着实现拓扑量子计算迈出了重要一步。国际权威学术期刊《自然·物理学》日前发表了该成果。 组成物质世界
物理所首次观测到有能隙的自旋子
量子自旋液体是凝聚态物理学家追寻已久的新奇物质形态。它由诺贝尔奖得主P. W. Anderson在70年代首次提出,80年代末被用来尝试解释当时刚发现的高温超导现象。传统的物质形态可以用能带理论和对称性自发破缺理论来描述,而自旋液体作为没有对称性破缺的量子物质形态需要用新的理论框架来描述。这个新
在相对论重离子碰撞实验中观测到可能的手征磁波现象
最近,美国布鲁克海文国家实验室RHIC-STAR国际合作组首次观测到相对论重离子碰撞下手征磁波(Chiral Magnetic Wave)可能存在的证据,中国科学院上海应用物理研究所马余刚课题组是该工作的主要作者(principal authors)单位之一。该项研究是马余刚指导的学生寿齐烨的博
武汉物数所等发现磁性原子对拓扑电子态的影响
拓扑材料因其新奇的表面态引起了人们广泛的关注。这种受时间反演对称性保护的相对论性拓扑电子态具有自旋手征性,因此在自旋电子学和量子计算方面有着巨大的应用前景。目前,许多实验和理论研究表明拓扑电子态在非磁散射下表面的时间反演对称性仍然保持。但磁散射下对称性是否发生破缺从而破坏拓扑材料表面态的性质仍存
研究提出宇宙学尺度宇称不守恒研究新方法
近日,中国科学院国家天文台研究员朱弘明与加拿大多伦多大学教授彭威禮合作,自主开发出新的数值模拟方法,能够在初始条件中加入左右不对称(宇称不守恒)的矢量和张量信号,并发现这些信号在宇宙漫长的演化中留有可探测痕迹,为利用星系巡天检验自然界基本对称性提供了新途径。 “宇称”可以简单理解为左右对称。就
“宇称—时间”对称增强型量子传感器问世
中国科学技术大学郭光灿院士团队李传锋、唐建顺研究组在量子传感和“宇称—时间”对称系统的实验研究中取得重要进展,他们首次实现“宇称—时间”对称增强型量子传感器,其灵敏度比传统量子传感器提高了8.86倍。该成果近期发表于《物理评论快报》。 浩渺的宇宙中有无数普通或者奇妙的对称性。如果物质同时满足时间
研究揭示HalfHeuslar合金YPtBi的非常规超导电性
拓扑量子计算可有效抵抗杂质、相互作用等的扰动,从而解决量子退相干与纠错的问题,实现容错量子计算。本征拓扑超导材料的超导态具有非常规的超导能隙结构,在晶体材料的自然边界可产生马约拉纳零能模式,是实现拓扑量子计算的主要方案之一。相比其他方案,该方案从原理上可回避诸如两种材料的晶格不匹配对拓扑保护的影
宁波材料所在Rashba材料研究中取得进展
电子具有电荷和自旋两种内禀属性,但传统的电子器件仅利用了电子的电荷属性而忽略了自旋属性。在过去的几十年中,人们发现电子的自旋比电荷具有更优越的性能,如退相干时间长、能耗低、运行速度快等。因此,自旋有望成为新一代电子器件的载体,随之兴起的学科即自旋电子学,在自旋电子学中,自旋流的产生、调控和探测是
半导体所在自旋器件翻转机制研究中获进展
自旋电子器件被认为是后摩尔时代存储和逻辑器件最有前景的解决方案之一。自旋电子学的核心是磁性比特的电流翻转。然而,科学家无法定量甚至定性地剖析面内电流翻转垂直磁矩的物理现象。为了探讨面内电流翻转垂直磁矩的深层次物理机制,中国科学院半导体研究所朱礼军团队围绕直接参与磁矩翻转的自旋轨道矩效应和手性交换相互
物理所等实验发现外尔费米子
1928年,狄拉克提出了描述相对论电子态的狄拉克方程。1929年,德国科学家外尔(Hermann Weyl)指出,当质量为零时,狄拉克方程描述的是一对重叠的具有相反手性的新粒子,即外尔费米子。这种神奇的粒子带有电荷,却不具有质量。但是80多年过去了,人们一直没有能够在实验中观测到外尔费米子。中微
学者发现自发对称性破缺并不总是能量和熵的妥协过程
当气温降低到零度附近,水会结成冰。理论物理学家都说这很容易理解:水的结冰是一种自发对称性破缺现象,虽然水分子间的相互作用力的本质在结冰前后并没有丝毫改变,但水分子却突然不可连续移动了,平移连续对称性破缺了。自然界还存在许许多多其它自发对称性破缺现象,甚至连宇宙中的物质之所以有质量都是由于某种对称
《自然》:复旦观测到量子自旋液体分数化激发
复旦大学物理学系赵俊课题组与陈钢课题组及合作者利用中子散射技术在量子自旋液体候选材料YbMgGaO4中首次观测到了分数化自旋激发----完整的自旋子激发谱,这一结果为该体系中量子自旋液体态的实现提供了强有力的证据。12月5日,相关研究成果在线发表于《自然》(Nature)杂志。 据悉,复旦大
欧核中心发现新的物质—反物质不对称现象
据物理学家组织网4月24日报道,欧洲核子研究中心今天在《物理评论快报》上提交了一份报告称,大型强子对撞机底夸克实验(LHCb)首次在B0s粒子的衰变中观察到物质—反物质的不对称性。这是已知的第四个亚原子粒子表现出了这种行为。 LHCb是LHC上的六个探测器之一,主要目标是测量在b强子中的C
中国科大在笼目结构超导体研究中获进展
中国科学技术大学合肥微尺度物质科学国家研究中心、物理学院、中科院强耦合量子材料物理重点实验室陈仙辉、吴涛和王震宇等组成的研究团队,在笼目结构(kagome)超导体研究中取得重要进展。科研团队在笼目超导体CsV3Sb5中观测到电荷密度波序在低温下演化为由three state Potts模型所描述的电
美科学家首次在实验中观测到分子混沌现象
一百多年前玻尔兹曼提出的“分子混沌”假定终获证实 据美国“每日科学”网站7月31日消息,美国贝勒大学的研究人员首次在实验中观测到分子混沌现象,从而证实了早已广为承认,但一直未被证明的分子混沌确实存在。 1877年,玻尔兹曼提出“分子混沌”假定。该假定认为:分子在碰撞之前彼此互不相干,只是在碰撞之后
研究首次在双分子反应中观测到重轻重振荡
近日,中国科学院大连化学物理研究所分子反应动力学国家重点实验室副研究员刘舒、研究员吴国荣、中科院院士杨学明和张东辉团队首次在Cl+CH4→HCl+CH3反应中发现了重-轻-重反应几率振荡现象。 许多重要的化学反应都涉及到一个轻原子(通常是一个氢原子)在两个重原子或原子基团之间的转移,这类反应通