新发现蓝菌对氮气情有独钟

据11月14日的《科学》(Science)杂志报道说,海洋中的蓝菌通常被认作是能够完成多种任务的细菌,它通过光合作用产生了大量的氧气,它能“固定”碳和氮,将这2种元素转化为在生物学上有用的形式。研究人员报告说,一组新近发现的蓝菌则反其道而行之,它只专注于固氮,而无需生产氧气和固定碳所需的遗传学机器。这些微生物在海洋中含量丰富,而生物固氮在控制海洋中的生物生产能力及碳通量上非常重要。因此,可能有必要对目前地球上氮气和碳循环的模型进行重新评估。 Jonathan Zehr及其同事分离出了这种所谓的“UCYN-A”蓝菌并分析了该种生物的基因组。他们发现,这种蓝菌的基因型是从前在非共生蓝菌中所未知的,它们在基因上无法进行产生氧气的光合作用。一个始料未及的情况是,氧气对固氮酶(即催化固氮反应的酶)实际上是有毒的。其它已知固氮蓝菌是多细胞的生物,并演化出了一系列的方略来避免其固氮酶被氧气毒化。另一方面,UCYN-A是一种单细胞的生物,看来......阅读全文

固氮菌有哪些特性?

  在无氮培养、温度18~40℃时,菌株均能生长且有固氮酶活性,其最适生长及固氮的温度为26~37℃;在偏酸(pH值5.0)和偏碱(pH值8.0)的条件下,菌株均能保持较强的生长势和较高的固氮酶活性,并能通过调节自身代谢适应环境的酸、碱变化,使培养液趋近中性;培养液中NaCl浓度在0.5~2.5g/

请问固氮菌有哪些用途?

  在形形色色的固氮菌中,名声最大的要数根瘤菌了。根瘤菌平常生活在土壤中,以动植物残体为养料,自由自在地过着“腐生生活”。当土壤中有相应的豆科植物生长时,根瘤菌便迅速向它的根部靠拢,并从根毛弯曲处进入根部。豆科植物的根部细胞在根瘤菌的刺激下加速分裂、膨大,形成了大大小小的“瘤子”,为根瘤菌提供了理想

关于固氮菌的发展介绍

  1901年,M.W.拜耶林克首先发现并描述了这类细菌,他定名的有2个种:一是褐色固氮菌,常生存于中性或碱性土壤中;一是活泼固氮菌,常生存于水中。后来,各国学者相继分离出许多不同的菌株。1938年,C.H.维诺格拉茨基将生产孢囊的菌株(以褐色固氮菌为代表)归属于固氮菌属,将不产生孢囊的菌株(以活泼

关于固氮菌的原理简介

  氮气是空气中的主要成分,占空气总量的五分之四。然而由于氮气分子被三条“绳索”--化学键所束缚,因此大部分植物只能“望氮兴叹”。固氮菌的本领在于它有一把“神刀”--固氮酶(含有Fe Co Mo即铁钴钼),可以轻易地切断束缚氮分子的化学键,把氮分子变为能被植物消化、吸收的氮原子。 俄罗斯莫斯科大学生

共生固氮菌的相关介绍

  在与植物共生的情况下才能固氮或才能有效地固氮,固氮产物氨可直接为共生体提供氮源。主要有根瘤菌属(Rhizobium)的细菌与豆科植物共生形成的根瘤共生体,弗氏菌属(Frankia,一种放线菌)与非豆科植物共生形成的根瘤共生体;某些蓝细菌与植物共生形成的共生体,如念珠藻或鱼腥藻与裸子植物苏铁共生形

蓝菌有毒吗?

蓝菌产各种各样的生物毒素,包括:神经毒素(Neurotoxin)、肝毒素(Hepatotoxin)、细胞毒素(Cytotoxin)及内毒素(Endotoxin)等,对人体及动物的健康或安全构成严重危险:神经毒素BMAA土生和水生的蓝菌生物皆含有神经毒素BMAA(β-N-methylamino-L-a

新发现蓝菌对氮气情有独钟

据11月14日的《科学》(Science)杂志报道说,海洋中的蓝菌通常被认作是能够完成多种任务的细菌,它通过光合作用产生了大量的氧气,它能“固定”碳和氮,将这2种元素转化为在生物学上有用的形式。研究人员报告说,一组新近发现的蓝菌则反其道而行之,它只专注于固氮,而无需生产氧气和固定碳所需的遗传学机器。

自生固氮菌的简介和培养

  自生固氮菌  还有一些固氮菌,如圆褐固氮菌,它们不住在植物体内,能自己从空气中吸收氮气,繁殖后代,死后将遗体“捐赠”给植物,让植物得到大量氮肥。这类固氮菌叫自生固氮菌。  培养  在实验条件下培养自生固氮菌,培养基中只需加入碳源(如蔗糖、葡萄糖)和少量无机盐,不需加入氮源,固氮菌可直接利用空气中

基因组学探究沙棘放线菌固氮生物学机制

   沙棘是胡颓子科沙棘属落叶性灌木,其根部与放线菌共生固氮,适应缺水少肥的华北及西北贫瘠地区,是防风固沙功臣;其果实富含维生素C及黄酮等活性物质,是健康饮品的原料供给者;具有重要的生态和经济价值。  近日,《新植物学家》(New Phytologist)在线发表了来自中科院植物分子科学卓越创新中心

关于固氮菌的基本内容介绍

  固氮菌属于细菌的一科。菌体杆状、卵圆形或球形,无内生芽孢,革兰氏染色阴性。好氧,厌氧,兼性厌氧均有,有机营养型,能固定空气中的氮素。包括固氮菌属、氮单孢菌属、拜耶林克氏菌属和德克斯氏菌属。固氮菌肥料多由固氮菌属的成员制成。  固氮菌是细菌的一科。菌体杆状、卵圆形或球形,能固定空中的氮素。氮是植物

固氮基因研究获突破-能让植物自行合成氮肥

   美国圣路易斯华盛顿大学日前发布新闻公报说,该校研究人员通过移植固氮基因,成功使一种光合作用细菌获得了从空气中吸收氮的能力。这将有助于研究植物固氮技术,培育不需要施氮肥的农作物。 图片来源网络  一些细菌和古菌能直接吸收空气中的氮,生成有用的氮化合物,这一过程称为固氮。植物没有固氮能力,只有一些

芒草固氮内生菌研究获新进展

近日,广东省科学院生态环境与土壤研究所研究员孙蔚旻团队研究揭示固氮内生菌可以提高先锋植物在极端环境的适应性。相关研究发表于Microbiome。 植物修复是尾矿生态修复的一种具有潜在经济效益的方法。先锋植物可以成功地在尾矿上定植,显示出尾矿植物修复的潜力。该研究利用群落分析、DNA-SIP实验和

玉米“肠道菌群”:未开发的生物固氮资源

玉米伤流液采集           中国农科院供图 与人类微生物组类似,植物微生物组被称为植物的第二个基因组,对植物生长发育、养分吸收、病虫害抵御等至关重要。 近日,科学家发现了定殖于玉米茎木质部伤流液内、具有固氮能力且高度保守的核心细菌微生物组,它们为玉米提供了氮素营养并促进根系生长。相关

长期施肥下土壤固氮菌群落构建研究取得进展

  在宏观生态学理论中,群落的构建机制是生物多样性产生和维持的核心研究内容。生态位理论和中性理论常被用来解释群落的构建过程。生态位理论强调的是确定性过程的作用,即环境过滤和种间相互作用对群落的影响;中性理论强调的是随机性过程的作用,即随机扰动、随机扩散以及随机的出生、死亡对群落的影响。已有研究表明,

固氮酶的固氮的过程简述

固氮的过程中每个电子的传递需要消耗2~3个ATP,而且一般固氮生物在固氮的同时也会产生氢气,因此固氮的总反应式可写为:N2 + 8 H+ + 8 e- ---------> 2NH3 + H2此过程消耗16~24个ATP。

豆科系统发育基因组学和根瘤菌固氮共生演化研究获进展

原文地址:http://www.cas.cn/syky/202103/t20210322_4781822.shtml

大尺度森林土壤固氮菌群落分布格局研究获进展

  生物固氮每年能向陆地生态系统提供40~100Tg的氮素,其中共生和自生固氮菌是生物固氮的主要贡献者,它们能将大气中的氮还原成氨,可为植物生长提供有效氮,维持森林生态系统土壤肥力并提高植物生产力。因此,阐明固氮菌群落分布格局可为理解森林氮循环过程以及调控氮素供给策略提供重要支撑。  为此,中国科学

关于固氮菌的微生物肥料的相关介绍

  1.固氮菌对土壤酸碱度反应敏感,其最适宜pH为7.4~7.6,酸性土壤上施用固氮菌肥时,应配合施用石灰以提高固氮效率。过酸、过碱的肥料或有杀菌作用的农药,都不宜与固氮菌肥混施,以免发生强烈的抑制。  2.固氮菌对提高土壤湿度要求较高,当土壤湿度为田间最大持水量的25%~40%时才开始生长,60%

大尺度森林土壤固氮菌群落分布格局研究获进展

生物固氮每年能向陆地生态系统提供40~100Tg的氮素,其中共生和自生固氮菌是生物固氮的主要贡献者,它们能将大气中的氮还原成氨,可为植物生长提供有效氮,维持森林生态系统土壤肥力并提高植物生产力。因此,阐明固氮菌群落分布格局可为理解森林氮循环过程以及调控氮素供给策略提供重要支撑。 为此,中国科学院

Azotobacter-Medium-(固氮菌培养基)的成分和适用范围

Azotobacter Medium (固氮菌培养基)KH2PO4 0.2g K2HPO4 0.8gMgSO4.7H2O 0.2g CaSO4.2H2O   0.1gNa2MoO4.2H2O Trace(微量) Yeast axtract(酵母膏) 0.5gMannitol(甘露醇) 20g FeC

研究发现锑氧化依赖的化能自养固氮过程

  广东省科学院生态环境与土壤研究所研究员孙蔚旻团队发现了锑氧化依赖自养固氮的全新生物地球化学过程,同时利用DNA-SIP和宏基因组分箱确定了微生物红环菌科(Rhodocyclaceae)和根瘤菌科(Rhizobiaceae)参与此过程。相关研究发表于Environmental Science &

黑河上游固氮细菌群落结构与多样性研究获得进展

  氮是高寒生态系统的限制性营养元素,对固氮细菌多样性及其影响因素的研究有助于解决高寒生态系统土壤氮缺乏的难题。   中国科学院寒区旱区环境与工程研究所科研人员在祁连山区冰沟选择了两种典型植被进行样方调查和土壤样品采集。通过对其土壤理化性质进行测定,对两种植被土壤中的固氮细菌多样性和丰度用克隆文库(

树叶固氮不是梦-细菌固氮新说挑战传统理论

   在热带雨林之外生长最快的树木是白杨。这种树高而细长,在不到10年的时间里就可以长到30米高,即便是生长在它们似乎并不适宜的环境里,如焚烧的土地以及多沙的河岸。  Sharon Doty说,这样的生长速度得益于其叶片和其他组织中的微生物。当白杨的叶子细胞忙着把日光转化为能量时,叶子细胞中的细菌会

沙雷氏菌参与砷氧化依赖的生物固氮过程获揭示

  近日,广东省科学院生态环境与土壤研究所研究员孙蔚旻团队发现了砷氧化驱动生物固氮的全新生物地球化学过程。同时,该团队利用DNA-SIP和宏基因组分箱,确定了微生物Serratia(沙雷氏菌)参与了此过程及相应代谢途径。相关研究发表于《环境科学与技术》。  尾矿是一种极端寡氮环境。生物固氮在提供生物

这项研究为开发根际固氮微生物接种菌剂提供启示

近日,中国科学院成都生物研究所研究员尹华军团队以农田和森林土壤为试验对象,比较了不同种类和数量的碳源添加下非共生固氮速率的变化规律,并进而探讨了其微生物机制。相关研究成果发表于《应用土壤生态学》。非共生固氮(FLNF)是生态系统中普遍发生的重要氮输入过程。该过程需要大量能量,因而根系分泌物输入极可能

科学家发现玉米的核心细菌微生物组具有固氮能力

与人类微生物组类似,植物微生物组被称为植物的第二个基因组,对植物生长发育、养分吸收、病虫害抵御等至关重要。  近日,科学家发现了定殖于玉米茎木质部伤流液内具有固氮能力且高度保守的核心细菌微生物组,它们为玉米提供了氮素营养并促进根系生长。相关研究成果由中国农科院农业资源与农业区划研究所(以下简称资划所

Chem封面:电池?固氮?

  氮气,作为地球大气层中含量最高的气体,可谓取之不尽用之不竭。但是,氮气分子中两个氮原子之间的N≡N三键十分强大,键能高达946 kJ/mol,在正常条件下相当稳定。因此将空气中的游离氮转化为化合态氮的固氮过程,对于化学工业来说很不容易。目前最成功的利用氮气和氢气制造氨的哈伯法(Haber-Bös

固氮的主要分类

人工固氮人工固氮长期以来,人们期望着农田中粮食作物能像豆科植物一样有固氮能力,以减少对 化肥的依赖。70年代首先实现了细菌之间的固氮 ... 主要在合成氨中实现人工固氮(工业上通常用H2和N2 在催化剂、高温、高压下合成氨,化学方程式:N2 + 3H2=(高温高压催化剂)2NH3)。 所有的含氮化学

什么是人工固氮

固氮分子氮经自然界的固氮生物(如各种固氮菌)固氮酶的催化而转化成氨的过程。是氮循环的重要阶段1、人工固氮   工业上通常用H2和N2 在催化剂、高温、高压下合成氨   化学方程式:N2 + 3H2=(高温高压催化剂)2NH3   最近,两位希腊化学家,位于Thessaloniki的阿里斯多德大学的G

豆科植物固氮“氧气悖论”破解

根瘤被称为豆科植物的“固氮工厂”,反映豆科植物与固氮根瘤菌的共生关系。豆血红蛋白(又称共生血红蛋白)存在其中,是根瘤中调节氧气浓度的“开关”,氧气是豆科植物和根瘤菌呼吸必需的,但根瘤菌中的固氮酶更喜欢低氧环境,“氧气悖论”就产生了。这一悖论始终悬而未决,也就是说,迄今为止有关根瘤内豆血红蛋白基因表达