通过PCR扩增在扩增DNA产物末端引入限制性核酸内切酶酶...

通过PCR扩增在扩增DNA产物末端引入限制性核酸内切酶酶切位点实验方法原理 实验材料 噬菌体 T4 DNA 连接酶限制性内切核酸酶靶 DNA试剂、试剂盒 氯仿EDTA乙醇酚氯仿乙酸钠TE仪器、耗材 琼脂糖凝胶水浴箱实验步骤 一、材料1. 缓冲液与溶液氯仿EDTA ( 0.5 mol/L, pH 8.0)乙醇酚:氯仿(1:1,V/V)乙酸钠(3 mol/L, pH 5.2)TE ( pH 7.5)2. 酶与缓冲液噬菌体 T4 DNA 连接酶限制性内切核酸酶3. 凝胶琼脂糖凝胶4. 核酸与寡核苷酸正向引物(20 μmol/L)与反向引物(20 μmol/L)溶于水中靶 DNA5. 载体质粒 DNA 应用相应的限制性内切核酸酶消化和凝胶电泳纯化6. 特殊设备水浴箱二、方法1. 应用本方案的材料部分设计的正向与反向引物,分成 4 支相同的 50 μl 体积反应管进行 PCR 反应扩增靶片段。合并 4 个反应......阅读全文

通过PCR扩增在扩增DNA产物末端引入限制性核酸内切酶酶...

通过PCR扩增在扩增DNA产物末端引入限制性核酸内切酶酶切位点实验方法原理 实验材料 噬菌体 T4 DNA 连接酶限制性内切核酸酶靶 DNA试剂、试剂盒 氯仿EDTA乙醇酚氯仿乙酸钠TE仪器、耗材 琼脂糖凝胶水浴箱实验步骤 一、材料1. 缓冲液与溶液氯仿EDTA ( 0.5 mol/L, pH 8.

PCR扩增在扩增DNA产物末端引入限制性核酸内切酶酶切位点

            实验方法原理 实验材料 噬菌体 T4 DNA 连接酶 限制性内切核酸酶 靶 DNA

PCR扩增在扩增DNA产物末端引入限制性核酸内切酶酶切位点

实验方法原理实验材料噬菌体 T4 DNA 连接酶限制性内切核酸酶靶 DNA试剂、试剂盒氯仿EDTA乙醇酚氯仿乙酸钠TE仪器、耗材琼脂糖凝胶水浴箱实验步骤一、材料1. 缓冲液与溶液氯仿EDTA ( 0.5 mol/L, pH 8.0)乙醇酚:氯仿(1:1,V/V)乙酸钠(3 mol/L, pH 5.2

如何对PCR扩增的产物进行酶切

限制性内切酶在 PCR扩增体系中仍然有部分活性,可以通过稀释(3倍以上)扩增混合液,适当提高酶量和反映时间,进行酶切。个人认为需要对PCR产物进行酶切分析通常是为了或基因表 型分析,由于Taq,Pfu等高温聚合酶在酶切温度(37度或更高)下,仍然保持一定的活性,高温聚合酶所具有的聚合或无模板添A或外

如何对PCR扩增的产物进行酶切?

Fermentas公司的研究表明,限制性内切酶在 PCR扩增体系中仍然有部分活性,可以通过稀释(3倍以上)扩增混合液,适当提高酶量和反映时间,进行酶切。个人认为需要对PCR产物进行酶切分析通常是为了或基因表型分析,由于Taq,Pfu等高温聚合酶在酶切温度(37度或更高)下,仍然保持一定的活性,高

切刻内切酶(NEAR)恒温扩增

  切刻内切酶(NEAR)恒温扩增是目前相关研究最少的一种恒温核酸扩增技术。它是在2008年由Ionian科技公司的研究人员开发并申请ZL的(Brain等2009)。除了链置换酶(Bst)外,NEAR反应中还需添加一个切刻内切酶。NEAR反应的引物设计需要将所使用的切刻内切酶的DNA作为序列加在引物

DNA的限制性内切酶酶切反应

  [实验目的]   通过本实验学习DNA的限制性内切酶酶切反应的基本原理与实验技术。   [实验原理]   1.限制性内切酶能特异地结合于一段被称为限制性酶识别序列的DNA 序列之内或其附近的特异位点上,并切割双链DNA。它可分为三类:Ⅰ类和Ⅲ类酶在同一蛋白质分子中兼有切割和修饰(甲基化)作

制备克隆用PCR产物的纯化

实验方法原理 PCR 产物经酚:氯仿抽提、乙醇沉淀及其他一些常用方法纯化后,DNA 样品内还往往残留了一些具有酶活性的 Taq DNA 酶与另外一些热稳定 DNA 聚合酶(Cioweetal. 1991; Bamesl992)。这些残余的 DNA 聚合酶连同一些残余的 dNTP 的持续存

制备克隆用PCR产物的纯化

            实验方法原理 PCR 产物经酚:氯仿抽提、乙醇沉淀及其他一些常用方法纯化后,DNA 样品内还往往残留了一些具有酶活性的 Taq DNA 酶与另外一些热稳定 DNA 聚合酶(Cioweetal. 1991; Bamesl992)。这些残余的

制备克隆用PCR产物的纯化

PCR 产物经酚:氯仿抽提、乙醇沉淀及其他一些常用方法纯化后,DNA 样品内还往往残留了一些具有酶活性的 Taq DNA 酶与另外一些热稳定 DNA 聚合酶(Cioweetal. 1991; Bamesl992)。这些残余的 DNA 聚合酶连同一些残余的 dNTP 的持续存在,常常妨碍有待进一步克隆

DNA的限制性核酸内切酶酶切实验和连接实验

一)酶切实验  本实验学习用限制性核酸内切酶(Restriction endonuclease)EcoRI 切割λDNA及质粒pBR322DNA,琼脂糖凝胶电泳后观察酶切结果。   【原理】   λDNA 是大肠杆菌的一种温和噬菌体DNA,双股线状,分子大小为48.5 kb。 EcoRI酶可识别DN

限制性核酸内切酶的定义

用来识别特定的脱氧核苷酸序列,并对每条链中特定部位的两个脱氧核糖核苷酸之间的磷酸二酯键进行切割的一类酶

限制性核酸内切酶的分类

限制性核酸内切酶的分类分为I型、II型和III型。

限制性核酸内切酶的来源

一般是以微生物属名的第一个字母和种名的前两个字母组成,第四个字母表示菌株(品系)。例如,从Bacillus amylolique faciens H中提取的限制性内切酶称为Bam H,在同一品系细菌中得到的识别不同碱基顺序的几种不同特异性的酶,可以编成不同的号,如HindⅡ、HindⅢ,HpaI、H

限制性核酸内切酶的命名

1、寄主菌属名的第一个字母和种名的头两个字母组成3个斜体字母的略语表示酶来源的菌种名称,如大肠杆菌Escherichia coli 表示为Eco , 流感嗜血菌Haemophilus influenzae 表示为Hin;2、用一个正体字母表示菌株的类型,比如EcoR、Hind;3、如果一种特殊的寄主

限制性核酸内切酶及其应用

(一)限制性核酸内切酶的发现当λ(k)噬菌体侵染E.coliB时,由于其DNA中有EcoB核酸酶特异识别的碱基序列,被降解掉。而E.coliB的DNA中虽然也存在这种特异序列,但可在EcoB甲基化酶的作用下,催化S-腺苷甲硫氨酸(SAM)将甲基转移给限制酶识别序列的特定碱基,使之甲基化。 EcoB核

DNA的限制性内切酶酶切反应技术

限制性核酸内切酶(restriction endonuclease)是指识别并切割特异的双链DNA序列的一种内切核酸酶。本实验是掌握DNA的限制性内切酶的酶切技术。DNA的限制性内切酶酶切反应技术[实验原理]1. 限制性内切酶能特异地结合于一段被称为限制性酶识别序列的DNA 序列之内或其附近的特异位

DNA的限制性内切酶酶切反应实验

[实验目的]通过本实验学习DNA的限制性内切酶酶切反应的基本原理与实验技术。[实验原理]1.限制性内切酶能特异地结合于一段被称为限制性酶识别序列的DNA 序列之内或其附近的特异位点上,并切割双链DNA。它可分为三类:Ⅰ类和Ⅲ类酶在同一蛋白质分子中兼有切割和修饰(甲基化)作用且依赖于ATP 的

DNA限制性内切酶酶切分析

一、原理限制性内切酶和基因载体是DNA重组技术中的两个极其重要的方面。限制性内切酶是首先在大肠杆菌中发现的能够分解外来DNA的核酸酶。与核酸外切酶相比,该酶可从DNA双链内部特异的核苷酸序列处将DNA双链切断,产生带有粘性或平头末端的DNA片段。把要克隆的外来DNA和载体DNA用同一种限制性内切酶切

限制性内切酶切割DNA

一、实验目的1.通过对DNA的酶切,学会设计构建体外重组DNA分子;2.根据目的基因合理选择载体与限制性内切酶;3.掌握DNA的酶切技术。 二、实验原理 限制性内切酶是从细菌中分离出来的一种能在特异位点切割DNA分子的核酸内切酶,目前已从多种细菌中分离出超过400种,识别各自不同

基因克隆技术

一、目的基因的获得目的基因是指所要研究或应用的基因,也就是将要克隆或表达的基因。获得目的基因是分子克隆过程中最重要的一步。目前用于获得目的基因的方法有几种,如限制性内切酶直接分离法、文库筛选法、体外扩增法和人工合成法等,其中限制性内切酶法直接分离目的基因和多聚酶链式反应(PCR)或逆转录-多聚酶链式

基因克隆技术

一、目的基因的获得 目的基因是指所要研究或应用的基因,也就是将要克隆或表达的基因。获得目的基因是分子克隆过程中最重要的一步。目前用于获得目的基因的方法有几种,如限制性内切酶直接分离法、文库筛选法、体外扩增法和人工合成法等,其中限制性内切酶法直接分离目的基因和多聚酶链式反应(PCR)或逆转录-

反向PCR(Inverse-PCR)技术的定义和特点

1.概述:反向PCR(reverse PCR)是用反向的互补引物来扩增两引物以外的未知序列的片段,而常规PCR扩增的是已知序列的两引物之间DNA片段.实验时选择已知序列内部没有切点的限制性内切酶对该段DNA进行酶切,然后用连接酶使带有粘性末端的靶序列环化连接,再用一对反向的引物进行PCR,其扩增产物

限制性核酸内切酶的消化反应

一个限制酶单位(U)指:在理想的反应条件(适宜的缓冲液和反应温度,通常为37℃)下,1h内中完全降解1 mg l DNA所需要的酶量。影响酶活性的因素很多,最重要的有:⑴ DNA的纯度⑵  DNA的甲基化程度⑶ 酶切反应的温度(通常为37℃ )⑷ DNA的分子结构⑸  核酸内切限制酶的缓冲液在“非最

限制性核酸内切酶的消化反应

一个限制酶单位(U)指:在理想的反应条件(适宜的缓冲液和反应温度,通常为37℃)下,1h内中完全降解1 mg l DNA所需要的酶量。影响酶活性的因素很多,最重要的有:⑴ DNA的纯度⑵  DNA的甲基化程度⑶ 酶切反应的温度(通常为37℃ )⑷ DNA的分子结构⑸  核酸内切限制酶的缓冲液在“非最

限制性核酸内切酶的生理意义

限制作用实际就是限制酶降解外源DNA ,维护宿主遗传稳定的保护机制。甲基化是常见的修饰作用,可使腺嘌呤A和胞嘧啶C甲基化而受到保护。通过甲基化作用达到识别自身遗传物质和外来遗传物质的目的。所以,能产生防御病毒侵染的限制酶的细菌,其自身的基因组中可能有该酶识别的序列,只是该识别序列或酶切位点被甲基化了

限制性核酸内切酶的分类性质

用于DNA基因组物理图谱的组建;基因的定位和基因分离;DNA分子碱基序列分析;比较相关的DNA分子和遗传工程;进行基因工程编辑。限制性核酸内切酶是由细菌产生的,其生理意义是提高自身的防御能力.限制酶一般不切割自身的DNA分子,只切割外源DNA。

限制性核酸内切酶的研究历史

一般是以微生物属名的第一个字母和种名的前两个字母组成,第四个字母表示菌株(品系)。例如,从Bacillus amylolique faciens H中提取的限制性内切酶称为Bam H,在同一品系细菌中得到的识别不同碱基顺序的几种不同特异性的酶,可以编成不同的号,如HindⅡ、HindⅢ,HpaI、H

限制性核酸内切酶的发现历史

当λ(k)噬菌体侵染E.coliB时,由于其DNA中有EcoB核酸酶特异识别的碱基序列,被降解掉。而E.coliB的DNA中虽然也存在这种特异序列,但可在EcoB甲基化酶的作用下,催化S-腺苷甲硫氨酸(SAM)将甲基转移给限制酶识别序列的特定碱基,使之甲基化。 EcoB核酸酶不能识别已甲基化的序列。

限制性核酸内切酶的分类性质

根据酶的功能特性、大小及反应时所需的辅助因子,限制性内切酶可分为两大类,即I类酶和Ⅱ酶。最早从大肠杆菌中发现的EcoK、EcoB就属于I类酶。其分子量较大;反应过程中除需Mg2+外,还需要S-腺苷-L甲硫氨酸、ATP;在DNA分子上没有特异性的酶解片断,这是I、Ⅱ类酶之间最明显的差异。因此,I类酶作