eIF2的调控信号通路图
mTOR可对细胞外包括生长因子、胰岛素、营养素、氨基酸、葡萄糖等多种刺激产生应答。它主要通过PI3K/Akt/mTOR途径来实现对细胞生长、细胞周期等多种生理功能的调控作用。 正常情况下,结节性脑硬化复合物-1(TSC-1)和TSC-2形成二聚体复合物,是小GTP酶Rheb(Ras-homolog enriched in brain)的抑制剂,而Rheb是mTOR活化所必需的刺激蛋白,因此TSC-1/TSC-2在正常情况下抑制mTOR的功能。当Akt活化后,它可磷酸化TSC-2的Ser939和Thr1462,抑制了TSC-1/TSC-2复合物的形成,从而解除了对Rheb的抑制作用,使得mTOR被激活。活化的mTOR通过磷酸化蛋白翻译过程中的某些因子来参与多项细胞功能,其中最主要的是4EBP1和P70S6K。 在整个PI3K/Akt/mTOR信号通路中,有一条十分重要的负反馈调节......阅读全文
eIF2的调控信号通路图
mTOR可对细胞外包括生长因子、胰岛素、营养素、氨基酸、葡萄糖等多种刺激产生应答。它主要通过PI3K/Akt/mTOR途径来实现对细胞生长、细胞周期等多种生理功能的调控作用。 正常情况下,结节性脑硬化复合物-1(TSC-1)和TSC-2形成二聚体复合物,是小GTP酶Rheb(R
eIF2的调控信号通路图
mTOR可对细胞外包括生长因子、胰岛素、营养素、氨基酸、葡萄糖等多种刺激产生应答。它主要通过PI3K/Akt/mTOR途径来实现对细胞生长、细胞周期等多种生理功能的调控作用。正常情况下,结节性脑硬化复合物-1(TSC-1)和TSC-2形成二聚体复合物,是小GTP酶Rheb(Ras-homolog
PKC信号通路图
PKC系统,又称为磷脂肌醇信号途径。系统由三个成员组成:受体、G蛋白和效应物。Gq蛋白也是异源三体,其α亚基上具有GTP/GDP结合位点,作用方式与cAMP系统中的G蛋白完全相同。该系统的效应物是磷酸肌醇特异的磷脂酶C-β(phosphatidylinositol-specific phosph
mTOR信号通路图
mTOR可对细胞外包括生长因子、胰岛素、营养素、氨基酸、葡萄糖等多种刺激产生应答。它主要通过PI3K/Akt/mTOR途径来实现对细胞生长、细胞周期等多种生理功能的调控作用。正常情况下,结节性脑硬化复合物-1(TSC-1)和TSC-2形成二聚体复合物,是小GTP酶Rheb(Ras-homolog
Jak/Stat信号通路图
JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。信号传递过程如下:细胞因子与相应的
MAPK/Erk信号通路图
MAPK,丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)是细胞内的一类丝氨酸/苏氨酸蛋白激酶。研究证实,MAPKs信号转导通路存在于大多数细胞内,在将细胞外刺激信号转导至细胞及其核内,并引起细胞生物学反应(如细胞增殖、分化、转化及凋亡等)的过程中
SAPK/JNK信号通路图
c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)又被称为应激活化蛋白激酶(stress-activated protein kinase,SAPK),是哺乳类细胞中MAPK的另一亚类。目前,从成熟人脑细胞中已克隆了10个JNK异构体,它们分别由JNK1、JNK2和JN
Jak/Stat信号通路图
JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。信号传递过程如下:细胞因子与相应的
SAPK/JNK--信号通路图
c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)又被称为应激活化蛋白激酶(stress-activated protein kinase,SAPK),是哺乳类细胞中MAPK的另一亚类。目前,从成熟人脑细胞中已克隆了10个JNK异构体,它们分别由JNK1、JNK2和JN
B-Cell-Receptor-信号通路图
B cells produce immunoglobulins (Ig, antibodies) that specifically bind antigen molecules. B cells first produce a membrane-bound form of immunogl
NFκB信号通路图
NF-kappaB是一个大家族,包括:RelA(p65)、c-Rel、RelB、NF-kappaB1 (p50/p105)、NF-kappaB2 (p52/p100)。其中以RelA(p65)研究最为深入。通常所说的是左边的经典途径,大致意思是这样:非激活状态下,RelA(p65)与一种名为Ikap
磷酸脂酶信号通路图
在这一信号转导途径中,膜受体与其相应的第一信使分子结合后,激活膜上的Gq蛋白(一种G蛋白),然后由Gq蛋白激活磷酸脂酶Cβ (phospholipase Cβ, PLC), 将膜上的脂酰肌醇4,5-二磷酸(phosphatidylinositol biphosphate, PIP2)分解为两个细胞内
T-Cell-Receptor-信号通路图
The T Cell Receptor plays a key role in the immune system. The specificity of the receptor is governed by the binding site formed from the mature a
血管生成(Angiogenesis)信号通路图
血管生成是通过人体中存在的诸多互补和复杂的信号途径调节的.血管内皮生长因子(VEGF)-血管内皮生长因子受体(VEGFR)、血管生成素(Ang)-Tie2轴和Dll4-Notch这3个复杂的、相辅相成的信号传导通路可在调节血管生成中发挥重要作用.VEGF与内皮细胞上的两种受体KDR和Flt-1高亲和
TGFβ/Smad-信号通路图
TGF-β(转化生长因子-β)信号通路在调控干细胞活性和器官形成中发挥着重要的作用,当TGF-β信号通路各成员活性未激活时,体内会自发性发生多种癌症,这表明TGF-β定向调节干细胞对癌症形成也具有不可或缺的功能。TGF-β超家族包含接近30个生长和分化因子,其中有TGF-β s,活化素(activi
Toll样受体信号通路图
TLR 家族成员(TLR3 除外)诱导的炎症反应都经过一条经典的信号通路(图 1),该通路起始于TLRs 的一段胞内保守序列—Toll/IL-1 受体同源区(Toll/IL-1receptor homologousregion,TIR).TIR可激活胞内的信号介质—白介素1受体相关蛋白激
G蛋白偶联受体信号通路激活的MAPK/Erk信号通路图
研究证实,受体酪氨酸激酶、G蛋白偶联的受体和部分细胞因子受体均可激活ERK信号转导途径。如:生长因子与细胞膜上的特异受体结合,可使受体形成二聚体,二聚化的受体使其自身酪氨酸激酶被激活;受体上磷酸化的酪氨酸又与位于胞膜上的生长因子受体结合蛋白2(Grb2)的SH2结构域相结合,而Grb2的SH3结构域
G蛋白偶联受体信号通路激活的MAPK/Erk信号通路图
研究证实,受体酪氨酸激酶、G蛋白偶联的受体和部分细胞因子受体均可激活ERK信号转导途径。如:生长因子与细胞膜上的特异受体结合,可使受体形成二聚体,二聚化的受体使其自身酪氨酸激酶被激活;受体上磷酸化的酪氨酸又与位于胞膜上的生长因子受体结合蛋白2(Grb2)的SH2结构域相结合,而Grb2的SH3结构域
p38-MAPK信号通路图
p38 MAPK是1993年由Brewster等人在研究高渗环境对真菌的影响时发现的[8]。以后又发现它也存在于哺乳动物的细胞内,也是MAPKs的亚类之一,其性质与JNK相似,同属应激激活的蛋白激酶。目前已发现p38MAPK有5个异构体,分别为p38α(p38)、p38β1、p38β2、p38γ、p
SAPK/JNK信号通路图涉及的信号分子主要包括
CrkL,Shc,GRB2,JNK,JNK1,JNK2,JNK3,MKK4,MKK7,IRS-1,c-Abl,Bax,CrkII,TAK1,ASK1,MAPKKKs,HPK1,GCK,MEKK1,MEKK4,MLK2,MLK3,DLK,TpI-2,TAO1,TAO2,PI3Kγ,c-Jun,SOS,
eIF4和p70-S6K的调控信号通路图
mTOR可对细胞外包括生长因子、胰岛素、营养素、氨基酸、葡萄糖等多种刺激产生应答。它主要通过PI3K/Akt/mTOR途径来实现对细胞生长、细胞周期等多种生理功能的调控作用。正常情况下,结节性脑硬化复合物-1(TSC-1)和TSC-2形成二聚体复合物,是小GTP酶Rheb(Ras-homolog
eIF4和p70-S6K的调控信号通路图
mTOR可对细胞外包括生长因子、胰岛素、营养素、氨基酸、葡萄糖等多种刺激产生应答。它主要通过PI3K/Akt/mTOR途径来实现对细胞生长、细胞周期等多种生理功能的调控作用。正常情况下,结节性脑硬化复合物-1(TSC-1)和TSC-2形成二聚体复合物,是小GTP酶Rheb(Ras-homolog e
RTKs介导的信号通路调控功能介绍
受体酪氨酸激酶(RTK)途径受各种正反馈回路的严格调节。 因为RTK协调多种细胞功能,例如细胞增殖和分化,所以必须对它们进行调节以防止细胞功能发生严重异常,例如癌症和纤维化。蛋白酪氨酸磷酸酶蛋白质酪氨酸磷酸酶(PTP)是一组具有磷酸酪氨酸特异性磷酸水解酶活性的催化结构域的酶。PTP能够以正向和负向改
自噬的信号通路图的组成部分
自噬的信号通路图可以分成2部分:巨自噬(Macroautophagy)和线粒体自噬(Mitophagy)。这2部分的又有重叠。
NFκB信号通路调控基因介绍
NF-κB在调节细胞反应中是相当重要的,因为它属于"快速作用"的初级转录因子,不需要新的蛋白质合成就能被激活(有该特性的其他成员包括c-Jun,STAT和核激素受体)。NF-κB是对有害细胞刺激的第一反应者。已知的NF-κB通路激活因子有很多,包括:TNF-α、IL-1β、IL-2、IL-6、IL-
CellRes:重要信号通路对干细胞的双重调控
继去年8月,中科院上海生化与细胞所赵允和张雷研究组的研究人员获得生物体内一种重要的信号转导通路:Hedgehog信号通路作用机制方面的新成果后,这一研究组又再次在Cell Research上发表文章,发现了Hedgehog信号通路在果蝇精巢干细胞调控中发挥了双重调控机制。 中科院上海生
研究揭示白介素17信号通路调控新机制
中科院上海生命科学研究院/上海交通大学医学院健康科学研究所钱友存研究组在最新研究中,揭示了白介素-17信号通路调控新机制。相关成果近日在线发表于国际学术期刊《分子生物学与细胞生物学》。 据介绍,白介素-17(IL-17)是一个重要的促炎症细胞因子,由辅助性T细胞(Th17)及先天性免疫细胞
PNAS-陈雁小组-ERK信号通路调控研究
近日,《美国国家科学院院刊》(PNAS)发表了中科院上海生命科学研究院营养科学研究所陈雁研究组关于ERK信号通路调控的最新研究成果。该研究发现了一个新的Raf-1调控蛋白,第一次揭示了Raf-1的空间调控方式,并提出了一种在高尔基体上遏制ERK信号通路的新机制,为未来研究肿瘤细胞过度增生的分子机理进
转化生长因子β信号通路调控方式介绍
TGF-β信号通路参与许多细胞过程,因此受到频繁的调控。TGF-β信号通路有多种正反馈和负反馈调节机制,如配体和R-SMAD的激动剂,诱饵受体,R-SMAD和受体被泛素化等。配体激动剂/拮抗剂脊索蛋白和头蛋白都是骨形成蛋白(BMP)的拮抗剂。它们与BMP结合,阻碍其与受体的结合。有研究显示,脊索蛋白
营养所等发现Wnt/Wingless信号通路的新调控机理
进化上高度保守的Wnt/Wingless信号通路在动物的器官发育、能量代谢和干细胞维持等过程中发挥重要作用,并与多种疾病的发生有密切联系。然而,迄今为止,人们对于该通路的信号转导机制还缺少充分的认识。为了探明其中未知的调控机制,中科院上海生命科学研究院营养科学研究所宋海云研究组与瑞士苏黎世大学B