微带不等分功分器设计与仿真(三)

五、设计结果和分析威尔金森设计向导S参数:优化后的S参数:Ads设计向导设计不等分功分器原理图:微带功分器原理图:设计微带功分器的原理图的S参数:六、总结实际应用中,常需要将某一输出功率按一定的比例分配到各分支电路中,例如:在相控雷达系统中,要将发射机功率分配到各个发射单元中去;在GSM通信系统中,从锁相环到接收、发射端,都需要用到功率分配器;RFID电路中,也需要将特定的功率均等地分配到不同的端口去;在微波毫米波系统中广泛应用功率分配器将输入功率分配到各个支路中,功分器作为一种低耗的无源器件已经必不可少。将探讨在射频带上实现等比功分器的方法,并用ADS软件来实现微带线形式功分器的设计和仿真。七、体会对于微带功率分配器我们常用的是功率等分的功率分配器,有很多软件对于功率分配器的仿真都是可以的,常用的有ESSOF,ADS,Microwave Office等,由于软件仿真的结果是理想化的,所以插入损耗与实际的差别由于电阻接头......阅读全文

微带不等分功分器设计与仿真(三)

五、设计结果和分析威尔金森设计向导S参数:优化后的S参数:Ads设计向导设计不等分功分器原理图:微带功分器原理图:设计微带功分器的原理图的S参数:六、总结实际应用中,常需要将某一输出功率按一定的比例分配到各分支电路中,例如:在相控雷达系统中,要将发射机功率分配到各个发射单元中去;在GSM通信系统中,

微带不等分功分器设计与仿真(二)

四、详细设计步骤设计原理:传输线结构的功率分配器[如图1(a)所示,输入端口特性阻抗为Z0,两段分支微带线电长度为/4,特性阻抗特性阻抗为Z0,两段分支微带线电长度为/4,特性阻抗分别为Z02和Z03,终端分别接负载R2和R3。首先做以下3条假设:(1)Port1无反射(2)Port2,3输出电压相

微带不等分功分器设计与仿真(一)

一、摘要功分器全称功率分配器,英文名Power divider,是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件,也可反过来将多路信号能量合成一路输出,此时可也称为合路器。一个功分器的输出端口之间应保证一定的隔离度。功分器的主要技术参数有功率损耗(包括插入损耗、分配损耗和反射损耗

微带线仿真分析

1、 仿真结构下面利用传输线理论和FEM-VFM两种方法对一微带线结构的连续传输线(如图1所示)进行了建模和仿真,提取了等效SPICE电路,从而得到了所需的时域仿真波形。如图1,微带线特性阻抗设置为50ohm,这样可以与一般测试设备端口阻抗(如矢量网络分析仪和频谱仪等)相匹配,借助微带线阻抗计算公式

平台化设计与仿真论坛召开

11月28日,由北京市经济和信息化局指导,北京信息化和工业化融合服务联盟与中国仿真学会共同主办,联盟平台化设计专业委员会、中国仿真学会CAE仿真专业委员会、国家数字化设计与制造创新中心北京中心、北京数字化设计与制造产业创新中心共同承办的“平台化设计与仿真论坛暨北京信息化和工业化融合服务联盟平台化设计

基于ADS平台改进型Doherty电路设计与仿真(三)

3dB电桥的S参数矩阵是(2)[b]表示反射波,[a]表示入射波当我们把隔离口开路时,b4=a4,代入到上式,并消去b4,a4,得到:得到一个3端口网络,这个3端口网络的S参数矩阵为(3)和(1)式比较,仅涉及3端口的参数的相位有差异,如果我们把后一电路的3端口前加上90°相移,则这个电路的S参数和

分支线耦合器的仿真设计

分支线耦合器,是一种90 度或正交混合耦合器,由于其制造工艺简单且易于设计,被广泛应用于各个行业。分支线耦合器是无源器件,常用于单天线发射器系统和I/Q(信号分配器/合路器)。让我们了解一下这类耦合器的基本工作原理及一些重要的设计要素。关于分支线耦合器分支线耦合器被用于分配及合并功率。这类耦合器由两

HMSIW定向耦合器的仿真设计

1.引言 基片集成波导(SIW) 是一种新型的高Q 值、低损耗集成导波结构,易于设计和加工,并 易集成在平板电路上,且成本低,可以广泛应用于微波毫米波集成电路中[1-4]。由于与传统 矩形波导的相似性,很多设计概念可以借用,比如波导功分器、滤波器、天线等。在本文中, 我们用这种导波结构宽

围殴DDR系列之设计与仿真分析篇

作为高速先生的宝藏话题,DDR的设计与仿真一直是我们关注的重点,上周五的文章介绍了DDR的发展历史、关键技术和JEDEC标准,本周继续对DDR设计及仿真分析的文章进行分类导读。01对于Layout工程师而言,最关心的莫过于DDR的设计要点。比如,在布局阶段,需要评估DDR走线拓扑对布局的影响

高速数字电路的设计与仿真(一)

  高速数字系统设计成功的关键在于保持信号的完整,而影响信号完整性(即信号质量)的因素主要有传输线的长度、电阻匹配及电磁干扰、串扰等。  设计过程中要保持信号的完整性必须借助一些仿真工具,仿真结果对PCB布线产生指导性意见,布线完成后再提取网络,对信号进行布线后仿真,仿真没有问题后才能送出加

高速数字电路的设计与仿真(二)

  从图中看出,信号线加长后,由于传输线的等效电阻、电感和电容增大,传输线效应明显加强,波形出现振荡现象。因此在高频PCB布线时除了要接匹配电阻外,还应尽量缩短传输线的长度,保持信号完整性。  在实际的PCB布线时,如果由于产品结构的需要,不能缩短信号线长度时,应采用差分信号传输。差分信号有

基于ADS软件的卫星动中通微带双工器的设计

1、引言卫星通信目前我国已研制出可移动的卫星通讯终端和接收型的“动中通”终端系统,可广泛用于汽车,火车,轮船等运动体,可实时跟踪同步通讯卫星,但收发双工型“动中通”终端系统尚属国内空白。2、系统介绍该“动中通”系统采用LNB变频以后下传的、为了减轻转台的载荷,发射功放下置的方式,系统技术指标及要求:

柱面共形裂缝阵天线的设计与仿真

1 前言波导裂缝阵天线容易控制口径面上的幅度分布和相位分布,口径面的利用效率高,体积小,剖面低,重量轻,在雷达和微波通信系统中获得了广泛的应用。但越来越多的要求需要天线与平台载体共形,这就对裂缝阵天线提出了更高的要求。柱面共形阵中需补偿从圆柱面上各辐射源到设计想的平口面的路程差在平口面上引起的非线性

变压器振动噪声仿真分析(三)

②  边界条件:根据实际工作情况,将底部进行全约束。在Harmonic Response处右键insert插入fixed supportFigure.插入边界条件Figure. 变压器边界条件加载③  分析设置:此处根据前述分析,将频率区间设置为0~1000HzFigure. 分析设置④  导入电磁

各大微波仿真软件介绍及算法和原理

1.引言微波系统的设计越来越复杂,对电路的指标要求越来越高,电路的功能越来越多,电路的尺寸要求越做越小,而设计周期却越来越短。传统的设计方法已经不能满足系统设计的需要,使用微波EDA软件工具进行微波元器件与微波系统的设计已经成为微波电路设计的必然趋势。随着单片集成电路技术的不断发展,GaAs、硅为基

在射频产品设计中将仿真与测量相结合

缩短产品开发周期一直以来都是研发机构的主要目标。减少开发时间的方法之一是将设计和测试工作同步进行——即通常遵循V型图产品开发模式。这种方法已经应用于汽车业和航空业。 在这些行业中,最终的产品是一个高度复杂的“由系统组成的系统”,V型图的左侧是设计,右侧代表的是测试/验证(如图1所示)。V型图真正的含

基于ADS平台不对称Doherty功率放大器的仿真设计(一)

为在高线性的前提下提高WCDMA基站系统中功率放大器的效率,仿真设计了一款工作于2.14 GHz频段不对称功率驱动的Deherty功率放大器。基于ADS平台,采用MRF6S21140H LDMOS晶体管,通过优化载波放大器和峰值放大器的栅极偏置电压改善三阶互调失真(IMD3),同时通过调节输

圆形滤膜分割器实验滤膜8等分90mm

名称:滤膜切分器型号: RNKF-90适用范围:切分φ90mm玻璃纤维滤膜、石英纤维滤膜等分数:2等分、4等分、8等分使用方法:1、开盖:逆时针旋转防尘盖,与切分台分开后,轻放于台面。2、放膜:持专用镊子,镊子的长尖在下,短尖在上,取待切分滤膜1片,采样面向上,放置于滤膜切分台的定位圈内,并使滤膜周

S波段固态功率放大器的仿真设计(三)

图6、功率增益效率特性6、结论本文利用功率合成的技术设计出S波段输出功率180W的大功率放大器,并充分的考虑了散热和屏蔽盒的设计,结合软件Agilent ADS仿真设计出符合技术指标的功率放大器,论文采用的3dB正交功率合成来实现功率合成,有损耗小、一致性好等优点。并且用HFSS对屏蔽盒进行

HFSS同轴线、微带线、共面波导端口设置

1、同轴线端口的设置同轴线端口的设置比较常用,一般可以用HFSS中的waveport来设置。Wave ports定义的表面一般为PEC,信号通过它进入和离开结构。它通常用在一些波导结构中,如波导,共面波导,同轴线等。Wave port一般设置在3D结构和边界之间的PEC界面上,让该结构和外部耦合。利

计算电磁学各种方法比较和电磁仿真软件(二)

ANSYS DesignerANSYS公司推出的微波电路和通信系统仿真软件;它采用了最新的窗口技术,是第一个将高频电路系统,版图和电磁场仿真工具无缝地集成到同一个环境的设计工具,这种集成不是简单和接口集成,其关键是ANSYS Designer独有的"按需求解"的技术,它使你能够根据需要选择求解器,从

基于ADS平台改进型Doherty电路设计与仿真(六)

图11、改进型Doherty仿真结果从图11的仿真结果看,改进型Doherty电路的峰值功率达到了43.3dBm,输出功率为37.3dBm时,效率达到了43%,与CLASS AB状态相比,功率回退同样6dB情况下,效率提高16.7%。5、结论通过从原理的推导,在理论方面论证了方案的可行性,再通过AD

基于ADS平台改进型Doherty电路设计与仿真(四)

如果我们把4口走一段微带再开路,那么会是什么情形呢,我们可以把1、2端口的反射看着从4口反射回1、2口的,4口增加的微带增加了反射路径,一段路径可以移到1、2端口上。于是,下面两个电路是等效的,可以验证它们的S参数矩阵是一样的,如图6所示。图6、3dB电桥等效转换图就是说我们调整4口反射线的长度就相

基于ADS平台改进型Doherty电路设计与仿真(一)

摘要:首先理论上推导,再通过Advanced design system( ADS) 平台仿真验证,仿真设计一款工作于2. 14 GHz 频段改进型Doherty功率放大器,与传统Doherty电路相比,其输出合路部分采用了3dB混合电桥进行合路,结构简单,无需调整主放大器和峰值放大器的补偿

基于ADS平台改进型Doherty电路设计与仿真(二)

在实际应用中,在小功率输入的情况下,Doherty 放大器的增益和单管相比,增益有较大幅度的下降。其原因主要是:由于峰值放大器匹配电路的影响,峰值放大器截止时,其等效阻抗并不满足理想情况的无穷大。并且由于等效阻抗并不是理想的无穷大,造成载波放大器能量的泄露,降低效率。为了解决Doherty

基于ADS平台改进型Doherty电路设计与仿真(五)

4、改进型Doherty 功率放大器仿真验证我们选用DXY鼎芯提供的10W LDMOS功率放大管BLF6G21-10G,在ADS上进行仿真,通过对比其工作在CLASS AB状态下的功率和效率,和采用改进型Doherty结构后的功率和效率进行对比,验证了方案的可行性。1)单管CLASS AB状态下仿真

仿真改进了双圆锥天线的设计

许多需要进行电磁兼容性合规测试的产品都采用了双圆锥天线。这类天线具备重要的宽带特性,有助于进行此类测试。我们将探讨如何通过仿真来确保这一点。双圆锥天线简介双圆锥天线是一种宽带天线,由两个圆锥形状的导电物体构成。这些宽带偶极天线具备一个典型特征,那就是拥有三个或更多的倍频程带宽。是什么使这类天线具备了

利用HFSS仿真设计天线去耦网络

1、天线去耦网络的意义大多数无线系统天线单元的都尽可能的松散排布,其相互之间的间隔足够大,因此天线间的互耦效应较弱。但是在手机等移动终端,由于空间狭窄,天线单元之间间距很小,从而会产生强烈的电磁耦合。研究表明,当天线间的间距小于或等于信号波长的一半时,接收天线上所收到的信号已经明显受到互耦效应的影响

RFID小型圆极化天线的设计

射频识别(Radio Frequency of Identificatio,RFID)是一种使用射频技术的非接触自动识别技术,具有传输速率快、防冲撞、大批量读取、运动过程读取等优势,因此,RFID技术在物流与供应链管理、生产管理与控制、防伪与安全控制、交通管理与控制等各领域具有重大的应

一种915MHz射频收发系统的ADS设计与仿真

1、引言近几年来,无线射频识别技术越来越受各国重视。随着供应链管理、集装箱、工业、科研和医药等行业对3 m以上射频识别技术的需求不断增加,国内外已经把研究的热点转向超高频段和微波频段。射频电路的设计主要围绕着低成本、低功耗、高集成度、高工作频率和轻重量等要求进行。本文对915MHz射频收发系