多光子显微镜成像技术:多光子显微镜用于体内神经元...
多光子显微镜成像技术:多光子显微镜用于体内神经元成像的多种技术与传统的单光子宽视野荧光显微镜相比,多光子显微镜(MPM)具有光学切片和深层成像等功能,这两个优势极大地促进了研究者们对于完整活体大脑深处神经的了解与认识。2019年,Jerome Lecoq等人从大脑深处的神经元成像、大量神经元成像、高速神经元成像这三个方面论述了相关的MPM技术[1]。想要将神经元活动与复杂行为联系起来,通常需要对大脑皮质深层的神经元进行成像,这就要求MPM具有深层成像的能力。激发和发射光会被生物组织高度散射和吸收是限制MPM成像深度的主要因素,虽然可以通过增加激光强度来解决散射问题,但这会带来其他问题,例如烧坏样品、离焦和近表面荧光激发。增加MPM成像深度最好的方法是用更长的波长作为激发光。另外,对于双光子(2P)成像而言,离焦和近表面荧光激发是两个最大的深度限制因素,而对于三光子(3P)成像这两个问题大大减小,但是三光子成像由于荧光团的吸收截面......阅读全文
多光子显微镜成像技术:多光子显微镜用于体内神经元...
多光子显微镜成像技术:多光子显微镜用于体内神经元成像的多种技术与传统的单光子宽视野荧光显微镜相比,多光子显微镜(MPM)具有光学切片和深层成像等功能,这两个优势极大地促进了研究者们对于完整活体大脑深处神经的了解与认识。2019年,Jerome Lecoq等人从大脑深处的神经元成像、大量神经元成像、高
多光子显微镜成像技术:双光子显微镜角膜成像
角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。 wx_article_20200815180121_819doe.jpg 图1 角膜的组织学结构 上皮层负责阻挡异物落入角膜,厚约50μm,由三
多光子显微镜成像技术:双光子显微镜角膜成像
角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。图1 角膜的组织学结构上皮层负责阻挡异物落入角膜,厚约50μm,由三种细胞构成,从外到内依次是表层细胞、翼细胞和基底细胞。只有基底细胞可进行有丝分裂和分化,基底细胞的补充是由从角膜
多光子显微镜成像技术:大视场多区域脑成像技术
为了了解神经回路的功能以及神经元之间的相互作用,需要对不同区域的大量神经元进行活体成像,我们这里介绍两种显微镜技术,分别针对大视场多区域成像和自由活动小鼠的活体成像。从图1可以看出用于视觉处理的神经元分布在直径约3毫米的区域——小鼠初级视觉皮层和多个较高级的视觉区域。当前的商用双光子显微镜系统通常提
LaVision双光子显微镜多线扫描双光子成像(一)
Journal of Neuroscience Methods 151 (2006) 276–286Application of multiline two-photon microscopy to functional in vivo imagingRafael Kurtz a,∗, Matthi
LaVision双光子显微镜多线扫描双光子成像(二)
2. 方法与结果 为了从激光扫描显微镜的功能性成像中得出重要结论,一个高的时间分辨率是很重要的。在低光情况下,这通常通过进行单线扫描来获取。这被以一个垂直系统(VS)神经元的突触前分支的激光共聚焦(Leica SP2)钙离子成像示例 (see Fig. 1, Table 1). 这类神
LaVision双光子显微镜多线扫描双光子成像(四)
2.3. 多线TPLSM中的获取模式 我们以两种获取模式操作多线TPLSM:第一种,整个研究使用所谓“帧扫描”模式,以64束激光在X、Y方向扫描样品。因此焦平面上激发了均一性照明,假定光束阵列的横向步长尺寸没有过于粗糙(通常使用≤400 nm的步长尺寸)。在Fig. 3A,展示了以“帧
LaVision双光子显微镜多线扫描双光子成像(三)
2.2.多线TPLSM中通过成像检测释放光 在单光束TPLSM中,光电倍增管PMT或者雪崩二极管APD可以很方便地用于释放光检测,由于双光子激发的原理,激发只发生在激光焦点处。因此,用于屏蔽离焦光线的共焦小孔变得不必要,并且可以使用NDD检测。这意味着激发光不会被送回扫描镜,而是直接进入位于靠
多光子显微镜成像技术:偏振分辨倍频显微镜及其图像...
多光子显微镜成像技术:偏振分辨倍频显微镜及其图像处理 在非线性光学显微镜中,二倍频(SHG)成像通常用于观测内源性纤维状结构,且SHG的强度很大程度上取决于入射光束的偏振方向与目标分子取向轴之间的相对角度。因此,基于偏振的SHG成像(P-SHG),可通过分析SHG信号强度与入射光束的偏振态之间
关于多光子激发成像技术特点的概述
Periasamy 和 Skoglund 等比较了相同光学配置下,双光子激光扫描显微镜和共聚焦扫描显微镜 [4]对非洲蟾蜍囊胚以及神经轴胚体细胞的成像能力。 研究结果表明,双光子激发成像穿透深度大、受细胞的固有荧光影响小。 因而 ,双光子提供了研究细胞内动力学、物质空间分布及结构的最佳方法。与荧
多光子显微镜成像技术:通过可编程的超连续谱脉冲实...
多光子显微镜成像技术:通过可编程的超连续谱脉冲实现无标记组织病理学传统的组织病理学处理组织包括固定、包埋、切片和染色等过程,会导致所得图像变形伪影且某些生物信息缺失,这对于医生对图像的观察和解释都会造成影响,并且这个过程会耗费大量的时间。对于非线性光学显微镜,通过不同的激发光能实现不同的非线性成像过
多光子显微镜中的焦点深度扩展方法(二)
为了解决使用单个环扩展焦深光通量不够的问题, BINGYING CHEN等人利用超短脉冲相干长度短的特性,采用多环结构的分束掩模,超快激光脉冲经过时会被分束掩模分成不同的环形子束,每个子束都有时间延迟,也就是每个子束在不同的时间点在物镜的焦平面上形成贝塞尔焦点。如果每个环引入的时间延迟大大超过了激光
Thorlabs多光子显微镜基本套件及应用
MPM-2PKIT多光子基本套件是Thorlabs公司为想要自己搭建多光子成像系统的研究人员提供的解决方案,在量身定制的同时又不牺牲成像的性能。该套件包含一个模块化多光子成像系统所必须的核心部件,为特定应用而配置。此外,该系统无需传统显微镜,即可以对大样品,如整个活体生物等进行成像,并且该设计减小了
多光子显微镜中的焦点深度扩展方法(一)
双光子激光扫描显微镜结合钙指示剂是活体神经元信号探测的金标准。神经网络中的神经元分布在三维空间中,监测它们的活动动态需要一种能够快速提高体积成像速率的方式。但是,使用光栅扫描多光子显微镜对大量图像进行成像,如果采用高数值孔径(NA)的物镜来获得较高的横向分辨率时,会导致较小的聚焦深度,为了获得小聚焦
多光子显微镜成像:无标记成像在发育生物学中的应用
光学成像可用于发育生物学,从而了解生物体的形成、揭示组织再生机制、认识并管理先天性缺陷和胚胎衰竭等。其中最受关注的两个问题:一是心脏在早期发育中会发生剧烈的形态变化,其潜在功能和生物力学方面仍有待研究;二是中枢神经系统发育异常会导致先天性的疾病,所以需要从动力学、功能和生物力学等方面对大脑发
关于正置多焦点多光子显微镜的简介
正置多焦点多光子显微镜是一种用于生物学领域的分析仪器,于2016年05月27日启用。 正置多焦点多光子显微镜的技术指标: 多种激光器灵活选择:405 nm、445 nm、488 nm、515 nm、561 nm、638 nm,输出功率可调;检测模块“标准”:ICX 285 感光元件(CCD)
多光子共聚焦扫描显微镜的原理以及应用
多光子共聚焦显微镜是光学显微镜的重大改进,主要表现为可以观察活细胞、固定细胞和组织的深层结构,并且可以得到清晰锐利的多层Z平面结构,即光学切片,并以此可以构建标本的三维实体结构。共聚焦显微镜采用激光光源,经过扩充后充满整个物镜后焦平面,然后经过物镜的透镜系统,在标本的焦平面上会聚成非常小的点。根据物
关于多光子技术的展望介绍
目前,多光子技术的研究主要以双光子技术为主。与双光子激发相比 ,三光子激发更能体现出多光子成像的优势。1997年, Webb等已经实现了三光子激发对小鼠活体内的血液复合胺成像。改善成像质量、提高成像速度是多光子技术发展的方向之一。 同时,寻找和制造更适合多光子激发使用的光聚合体 、大吸收截面的荧
关于多光子技术的背景介绍
多光子技术 [1]是基于多光子激发理论提出的新型光子技术。以双光子技术为代表的多光子技术已经在生物及医学成像、单分子探测、三维信息存储、微加工等领域得到广泛应用,展示了广阔的发展前景。 双光子激发( two-photon excitation, TPE)是最简单的多光子激发( multi-ph
Nature子刊:高速双光子显微镜可用于小鼠大脑成像
近日,美国斯坦福大学Mark J. Schnitzer及其研究小组研发出可用于清醒小鼠大脑成像的千赫兹双光子显微镜。这一研究成果于2019年10月28日在线发表于国际学术期刊《自然—方法学》。 研究人员介绍,双光子显微镜是在散射介质中成像的主要技术,通常可提供约10–30 Hz的帧采集速率。
双光子显微镜的双光子显微镜的优势
双光子荧光显微镜有很多优点:1)长波长的光比短波长的光受散射影响较小容易穿透标本;2)焦平面外的荧光分子不被激发使较多的激发光可以到达焦平面,使激发光可以穿透更深的标本;3)长波长的近红外光比短波长的光对细胞毒性小;4)使用双光子显微镜观察标本的时候,只有在焦平面上才有光漂白和光毒性。所以,双光子显
显微镜里,单光子、双光子显微镜的区别
这个以前解释过,单光子就是通常的荧光激发方式,一个光子激发一个荧光分子发光,荧光波长比激发波长稍微长一些;双光子就是用两个光子激发一个荧光分子,激发光子能量小于荧光光子能量,因此激发波长长于荧光波长。现在公认的双光子激发的用途:1. 用于用到红外激发,穿透深度要高于单光子激发,2. 用于需要更高的激
关于多焦点多光子显微技术的简介
多焦点多光子显微技术是 20 世纪末发展起来的, 它与单光束激光扫描显微镜 相比最大的变化是: (1) 需要一 个光束分离装置(如右图)产生多个焦点; (2) 需要一个探测器能够探测从所有焦点处发出的荧光信号 。 多焦点多光子显微技术采用旋转微透镜盘 、微透镜阵列 [6]、级联分束镜 [7
多焦点多光子显微技术进展的概述
生物医学发展对检测和成像系统的一个要求是在一次测量中能以很高的灵敏度和特异性得到多种功能信息, 另一个要求是能够无损、实时监测活体细胞的动态过程 , 这也成 为了荧光显 微技术不断发展和进步的源动力 。多焦点多光子显微技术在提高激发光能 利用率的同时 , 也提高了成像速度, 从而使实时双光子激发
关于多焦点多光子显微技术的简介
多交点多光子显微技术(multifocal multiphoton microscopy,MMM)提高了激发光能的利用率和成像速度,可以实现样品的三维快速多光子激发荧光显微成像,并且具有对活体样品损伤小,成像深度大,图像信噪比高等优点。 荧光显微技术已经成为生物医学领域的重要研究工具,激光扫描
多光子技术的应用研究进展
多光子激光扫描显微镜是在激光共聚焦扫描显微镜基础上发展起来的。继 1997年伯乐公司推出了第一台双光子激光扫描显微镜后,1998年 5月德国莱卡公司也加入竞争。 多光子扫描显微镜具有成像穿透深度深、光学三维分辨率高等特点,为实时、原位观察生物活体提供了最佳方法。 1、钙生物学研究 与荧光探针
双光子显微镜简介
双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。双光子激发的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双光子
简述正置多焦点多光子显微镜的主要功能
正置多焦点多光子显微镜,无盖玻片样品制备和多视角成像为自由角度观察样品造就绝佳机会。角度成像数据的融合能够提高空间分辨率并使图像信息内容更加丰富。在一个时间序列内且完全相同的实验条件下,采集实验组和对比组的多角度数据集。或者在一个实验中观察多个样品并获得高通量数据。可以从最完美的视角或同时从多个
LaVision双光子显微镜多焦点扫描与光激活蛋白在...(一)
LaVision双光子显微镜-多焦点扫描与光激活蛋白在核转运研究中的应用Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intr
550万,浙江大学发布活体多光子显微镜公开招标公告
分析测试百科网讯 近日,浙江大学发布活体多光子显微镜公开招标公告,预算金额550万元,招标文件如下: 项目名称:活体多光子显微镜 项目编号:ZUPC-GK-HW-2019025 预算金额:550万元(人民币) 投标截止时间:2019年08月14日 09:00 开标时间:2019年08月