合成孔径雷达原理(四)
By assuming that the Doppler frequency shift is constant only until the quadratic term adds a value of / 4 to , then the window for observing the waveform is confined to a distance of xwindow, whereand soTherefore the time window isTherefore, the new azimuth resolution isA SAR processor which uses this technique is known as unfocused SAR. This technique does not account for the variable rate ......阅读全文
合成孔径雷达原理(四)
By assuming that the Doppler frequency shift is constant only until the quadratic term adds a value of / 4 to , then the window for observing the wav
合成孔径雷达原理(一)
Theory of Synthetic Aperture Radar合成孔径雷达原理Electromagnetic TheoryUnlike optical and infrared imaging sensors which are inherently passive, meaning
合成孔径雷达原理(五)
Lay OverThe direction of relief displacement is different for optical and radar systems. A camera sees the relief displaced away from the nadir po
合成孔径雷达原理(三)
But for v
合成孔径雷达原理(二)
Range ResolutionRange is the direction perpendicular to flight path of the aircraft. The vertical beamwidth , shown in Figure 3, is determined by the
合成孔径雷达的基本原理
合成孔径雷达是安装在移动平台上的成像雷达。[7] 依次传输和接收电磁波信号,系统电子设备可以将数据数字化并存储起来,以备后续处理。由于发送和接收发生在不同的时间,它们映射到不同的位置。接收信号的有序组合建立了比物理天线宽度长得多的虚拟孔径。这就是术语“合成孔径”的来源,赋予它成像雷达的特性。[5
合成孔径雷达成像原理的介绍
合成孔径雷达是一种具有高分辨率的成像雷达,是雷达的一个重要发展方向。 本书可作为高等学校雷达专业的研究生教学用书,也可供雷达技术领域的工程技术人员和科研人员阅读参考。 可分为两大部分:第一部分为第二章至第五章,包括雷达成像处理必要的关键技术:脉冲压缩、成像处理算法以及多普勒参数估计,其中还包
无人机载合成孔径雷达系统技术与应用(四)
(4) 立体测绘、海面和船只利用多次或单次干涉测量,无人机载SAR可以获取地物的3维高程信息,在地理测绘等领域中具有重要应用。3维高程测量结果如图 22所示。4 无人机载SAR关键技术4.1 总体设计技术从国内外发展状况可以看出,无人机载SAR的技术需求呈现多功能和多样化,如不同的工作模式、不同的性
合成孔径雷达
合成孔径雷达雷达(SAR)是雷达的一种类型,用于创建物体的二维或三维图像的重建,例如风景地貌。[1] 合成孔径雷达利用雷达天线在目标区域的运动来提供比传统波束扫描雷达更好的空间分辨率。合成孔径雷达通常安装在如飞机或航天器的移动平台上,起源于一种先进的侧视机载雷达(SLAR)。合成孔径雷达装置在雷
合成孔径雷达简介
合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种全天候、全天时的现代高分辨率微波成像雷达。它是二十世纪高新科技的产物,是利用合成孔径原理、脉冲压缩技术和信号处理方法,以真实的小孔径天线获得距离向和方位向双向高分辨率遥感成像的雷达系统,在成像雷达中占有绝对重要的地
合成孔径雷达的算法
这里给出的合成孔径雷达算法通常适用于相控阵。 定义了一个场景元素的三维数组(体积),它将代表目标存在的空间体积。阵列的每个元素都是立方体素,表示反射表面在空间中该位置的概率(“密度”)。(注意二维SAR也是可能的,只显示了目标区域的自上而下的视图。) 最初,合成孔径雷达算法将零密度赋予每个体
合成孔径雷达发展历程
合成孔径的概念始于50年代初期。当时,美国有些科学家想突破经典分辨力的限制,提出了一些新的设想:利用目标与雷达的相对运动所产生的多普勒频移现象来提高分辨力;用线阵天线概念证明运动着的小天线可获得高分辨力。50年代末,美国研制成第一批可供军事侦察用的机载高分辨力合成孔径雷达。60年代中期,随着遥感
合成孔径雷达的历史
卡尔·威利,[44] 1951年6月,一位数学家在为阿特拉斯洲际弹道导弹计划研究相关制导系统时,发明了合成孔径雷达。[45] 1952年初,威利与弗雷德·海斯利和比尔·韦尔蒂一起,构建了一个被称为“多普勒无参数搜索雷达”的概念验证系统。在20世纪50年代和60年代,Goodyear(后来的Goo
逆合成孔径雷达成像(二)——雷达基本原理1
电磁散射 散射是当电磁波碰到不连续/非均匀性或物体时发生的物理现象。波动轨迹或路径的偏差通常称为散射。根据散射物体相对于电磁波波长的大小,可以对散射现象进行分类。雷达信号以不同的方式反射或散射,这取决于电磁波的波长和物体的形状(散射体)。如果电磁波的波长比散射体的大小小得多,电磁波就会反射回来
干涉合成孔径雷达的应用
构造 InSAR可应用于构造形变,例如地震造成的地表位移。首次应用实在1992年 Landers地震,很快便在全球各种地震中普遍使用,特别是对1999年土耳其伊兹密特和2003年伊朗Bam地震进行了深入研究。InSAR也可用于监测断层。 火山监测 InSAR被用于各种火山监测,包括爆发造成
干涉合成孔径雷达的简介
这种测量方法使用两幅或多幅合成孔径雷达影像图,根据卫星或飞机接收到的回波的相位差来生成数字高程模型或者地表形变图。理论上此技术可以测量数日或数年间厘米级的地表形变,可以用于自然灾害监测,例如地震、火山和滑坡,以及结构工程尤其是沉降监测和结构稳定性。
合成孔径雷达的研究热点
合成孔径雷达 (Synthetic Aperture Radar),是利用合成孔径原理,实现高分辨的微波成像,具备全天时、全天候、高分辨、大幅宽等多种特点,最初主要是机载、星载平台,随着技术的发展,出现了弹载、地基SAR、无人机SAR、临近空间平台SAR、手持式设备等多种形式平台搭载的
合成孔径雷达的数据分布
Alaska Satellite Facility为科学界提供来自当前和过去任务的合成孔径雷达数据产品和工具的生产、存档和分发,包括2013年6月发布的具有35年历史的Seasat SAR图像。 CSTARS下载和处理来自各种卫星的合成孔径雷达数据(以及其他数据),并有迈阿密大学罗森斯蒂尔海洋
合成孔径雷达的数据收集
飞越有关地形的飞机可以收集高度准确的数据。20世纪80年代,作为NASA航天飞机上飞行仪器的原型,NASA在其康维尔990上运行合成孔径雷达。 1986年,这架飞机起飞时着火了。1988年,美国国家航空航天局重建了一个C、L和P波段合成孔径雷达,搭载于NASA的DC-8飞机。它被称为AIRSAR
合成孔径雷达的典型应用
在典型的合成孔径雷达应用中,单个雷达天线装载于飞机或航天器上,以辐射具有垂直于飞行路径方向的基本波束分量。波束在垂直方向上很宽,这样它将从飞机下方向地平线照射。 图像范围维度的分辨率是通过定义非常短时间间隔的脉冲来实现的,或者通过发射由载波频率和必要边带组成的短脉冲,全部在一定带宽内,或者通过
合成孔径雷达的图像外观
以下考虑因素也适用于实际孔径地形成像雷达,但当距离分辨率与仅可从合成孔径雷达获得的交叉波束分辨率相匹配时,这些因素则显得更为重要。 雷达图像的二维是距离和交叉距离。有限地形的雷达图像类似于倾斜的照片,但不是从雷达位置拍摄的。这是因为雷达图像中的距离坐标垂直于倾斜照片的垂直角度坐标。因此,观看这
合成孔径雷达的动机和应用
合成孔径雷达能够独立于飞行高度和天气进行高分辨率遥感探测,因为合成孔径雷达可以通过改变频率以避免天气引起的信号衰减。合成孔径雷达具有昼夜成像能力,因为合成孔径雷达可以在夜间提供电磁照明。[3][4][5] 合成孔径雷达图像在地球和其他行星表面的遥感和测绘中有着广泛的应用。合成孔径雷达的应用包括
合成孔径雷达与相控阵的关系
一种与合成孔径雷达密切相关的技术是使用实际天线阵列(称为“相控阵列”),这些天线元件在垂直于雷达距离维度的一个或两个维度上进行空间排布。这些物理阵列是真正的合成阵列,实际上是由一组辅助物理天线合成的。它们的操作不需要涉及相对于目标的运动。这些阵列的所有元件同时实时接收,通过它们的信号可以分别受到
四大色谱原理
色谱法分类按两相的物理状态可分为:气相色谱法(GC)和液相色谱法(LC)。气相色谱法适用于分离挥发性化合物。GC根据固定相不同又可分为气固色谱法(GSC)和气液色谱法(GLC),其中以GLC应用最广。液相色谱法适用于分离低挥发性或非挥发性、热稳定性差的物质。LC同样可分为液固色谱法(LSC)和液液色
SAR和ISAR有什么区别
主要区别是,性质不同、原理不同、特点不同,具体如下:一、性质不同1、SARSAR,是合成孔径雷达英文(Synthetic Aperture Radar)首字母缩写。即合成孔径雷达。2、ISARISAR,是逆合成孔径雷达英文 (ISAR: Inverse Synthetic Aperture Rada
干涉合成孔径雷达的永久散射体
永久或固定不变的散射体技术相对传统InSAR来说是最近开发的,它基于对一些列干涉图中保持相干性像素的研究。1999年,意大利米兰理工大学的研究人员开发了一种新的多图象处理方式,这就是在一摞图像中寻找地面上提供了稳定持久雷达反射的物体。这些物体可以是像素般大,通畅是子像素大,出现于每一幅图像中。
ELISA原理与分类介绍(四)
3.1.3 包被用抗原 用于包被固相载体的抗原按其来源不同可分为天然抗原、重组抗原和合成多肽抗原三大类。天然抗原可取自动物组织、微生物培养物等,须经提取纯化才能作包被用。如HBsAg可以从携带者的血清中提取,一般的细菌和病毒抗原可以从其培养物中提取,蛋白成份抗原可从富含此抗原的材料中提取等(例如A
四氢叶酸的作用原理
四氢叶酸是体内“一碳单位”转移酶系统中的辅酶,是由叶酸在维生素C和NADPH+存在下,经叶酸还原酶作用下生成二氢叶酸,然后由二氢叶酸还原酶催化生成四氢叶酸。四氢叶酸是一碳基团的载体,可传递一碳单位,参与嘌呤、嘧啶的合成,对正常血细胞的生成具有促进作用 。
四极杆的工作原理
质量/电荷分析器有很多种,比如磁分析器、离子阱、飞行时间等。目前商业上有机质谱(因为有机物质分子量大)仪器大多采用飞行时间,无机质谱仪器大多采用四极杆(Quadrupoles):由四根带有直流电压(DC)和叠加的射频电压(RF)的准确平行金属或陶瓷镀金园柱杆构成,相对的一对电极是等电位的,相邻两对电
湿度发生器原理四
原理四:温度固定点法,即平衡水汽压法,这种方法是利用某些盐类或其它化合物的水溶液在一定的条件下其气相中的水汽分压保持恒定的原理。