基于微波倍频源太赫兹频段雷达散射截面测量(二)

(3) 幅相修正幅相修正技术主要针对由迹线噪声,发射/参考信号抖动,温飘,或非比值数据测量等原因引起的测试信号不稳,导致定标测量信号和目标测量信号不一致引起的误差进行修正。为了降低测量过程中信号不一致对测量结果造成的影响,采用设置固定幅相标定体的方法检测信号,对测量信号进行幅相修正。幅相标定体需要具有较强的后向散射,摆设位置与被测目标互不遮挡。幅相标定体与被测目标位置足够远,以降低两者之间互耦对测试精度造成的影响。一般可将幅相定标体放置于测量区域以外,将其置于测量天线副瓣范围内,这样可保证与测量目标距离足够远,而幅相标定体后向散射足够高可以保证信噪比。摆放示意图如图6所示。一般经背景对消后相对测量法的目标RCS计算公式[6]表示为:其中,C为定标体信号;T为目标信号;Bc为定标体背景信号;Bt为目标背景信号;此处C/T/B皆为频域信号。在此基础上引入幅相标定体,在测量中其摆放如图6所示。由于在定标体和目标测量中该幅相标定体位置不......阅读全文

基于微波倍频源太赫兹频段雷达散射截面测量(一)

吴洋, 白杨, 殷红成, 张良聪    摘要:在220~330 GHz频段,采取自由空间场形式,采用扫频连续波信号进行目标雷达散射截面(RCS)测量。系统由矢量网络分析仪,毫米波混频器,馈源及目标支撑系统组成。多种散射测量技术将通过实验验证并应用于目标测量中。最终保证系统对–23.6 d

基于微波倍频源太赫兹频段雷达散射截面测量(二)

(3) 幅相修正幅相修正技术主要针对由迹线噪声,发射/参考信号抖动,温飘,或非比值数据测量等原因引起的测试信号不稳,导致定标测量信号和目标测量信号不一致引起的误差进行修正。为了降低测量过程中信号不一致对测量结果造成的影响,采用设置固定幅相标定体的方法检测信号,对测量信号进行幅相修正。幅相标定体需要具

中国电科41所:太赫兹测试达国际先进水平

“十二五”期间,太赫兹应用技术研究不断升温,各科研院所对太赫兹测试手段需求迫切。中国电科41所通过863、预研、国防基础等项目的申请和立项,成功研制出频率覆盖到500GHz的系列化测试仪器,性能指标达国际先进水平,并成功的应用于国内市场,深受好评。   通过努力攻关,中国电科41所成功突破毫米波频段

我科学家研制出太赫兹肖特基二极管及电路

  近日,中国科学院微电子研究所微波器件与集成电路研究室太赫兹器件研究组研制出截止频率达到3.37THz的太赫兹肖特基二极管和应用于太赫兹频段的石英电路。该器件作为太赫兹倍频器核心元件,经中电集团41所验证,性能与国际同类产品相当。   据了解,太赫兹波指的是频率在0.1THz至10.0THz范围

无源太赫兹太赫兹技术发展新高峰

2016年2月27日,国家创新与发展战略研究会在上海虹桥示范馆举办了“当代科技创新成果展”。举办展会的宗旨是服务“中国制造2025战略”,为世界级的创新科技企业提供展示平台。此次成果展,对参展资格要求十分严苛:其技术或产品处于世界领先水平;其技术或产品对中国产业具有升级效果;可能对未来世界做出贡献的

天津大学微波太赫兹波微系统实验室启用

日前,由天津大学和罗德与施瓦茨公司创立的微波太赫兹微电子系统实验室正式启动,启动仪式与太赫兹测量与应用论坛在天津大学会议楼第八会议室同期举办。   太赫兹波谱学、太赫兹成像和太赫兹通信是当前研究的三大方向。在安全检查、无损探测、天体物理、生物、医学、大气物理、环境生态以及军事科学等诸多科学领域有

毫米波与太赫兹技术(四)

4.2、太赫兹天线随着对太赫兹技术研究的深入,太赫兹天线也逐渐成为研究热点。太赫兹频段相比微波毫米波频段有着更高的工作频率,对应的波长也短很多。由于天线尺寸与波长的相关性,太赫兹天线具有尺寸小的天然优势,但也对加工制作带来了挑战。类似于低频段通信的天线需求,太赫兹天线也分全向天线、定向天线以及多波束

毫米波与太赫兹技术

今日推荐文章作者为东南大学毫米波国家重点实验室主任、IEEE Fellow 著名毫米波专家洪伟教授,本文选自《毫米波与太赫兹技术》,发表于《中国科学: 信息科学》2016 年第46卷第8 期——《信息科学与技术若干前沿问题评述专刊》,射频百花潭配图。引言随着对电磁波谱的不断探索, 人类对电子学和光学

太赫兹雷达技术(三)

3.2 目标散射特性建模与计算目标散射特性建模与计算是获取目标散射特性的有效方法。太赫兹频段实际目标一般应视为粗糙表面目标,表面细微结构散射较强不可忽略,且是超电大尺寸目标,这是太赫兹频段目标散射特性建模与计算的瓶颈问题。研究太赫兹频段目标特性可采用两种技术途径:一种是由微波/毫米波向上扩展,另一种

抢占“太赫兹频谱”先机-加快我国高频段开发利用

当前,无线通信高速化、宽带化、泛在化特点日益明显。据统计,截至2020年前后,无线通信系统数据传输速率将提高到100Gbit/s,频谱资源向更高频段扩展成为必然趋势。针对下一代通信解决方案,能提供20GHz以上连续可用带宽的太赫兹频谱成为研究重点。目前国际针对频谱资源划分上限是275GHz,对300

毫米波与太赫兹技术(三)

1.3 窄带太赫兹连续波源窄带太赫兹辐射源的目标是产生连续的线宽很窄的太赫兹波。常用的方法包括:a) 利用电子学器件设计振荡器,尤其是以亚毫米波振荡器为基础,提高振荡器的工作频率,以设计实现适合太赫兹频段的振荡器。由于这一特点,目前报道的太赫兹源的工作频率主要集中在较低的太赫兹频段。但是,在此基

太赫兹雷达技术(一)

摘要:太赫兹雷达具有带宽大、分辨率高、多普勒敏感、抗干扰等独特优势,是目标探测领域的重要发展方向。该文首先回顾和介绍了电子学和光学太赫兹雷达系统历史、现状和最新进展,其次对太赫兹雷达目标特性从机理、计算、测量3个方面进行了梳理和概要介绍,同时阐述了太赫兹ISAR、SAR、阵列和孔径编码成像研究状况,

太赫兹雷达技术空间应用与研究进展

太赫兹技术是目前信息科学技术研究的前沿与热点领域之一,近几年来,受到世界各国研究机构的广泛关注,科学家们开展了许多基础研究与应用研究方面的工作,这一新技术的科学价值预示着它具有蓬勃的生命力和美好的发展前景[1]。太赫兹雷达是太赫兹波在军事领域应用研究中最重要的研究方向之一,目前主要开展的是主动式太赫

科学家创建太赫兹磁源

   澳大利亚的电气和光学工程师设计了一个适应通信和光传输的新平台。来自新南威尔士大学、阿德莱德大学、南澳大学和澳大利亚国立大学的科学家利用一个新的传输波长实验验证了他们的系统。和目前被用于无线通信的波长相比,该波长拥有更长的带宽容量。试验结果日前发表于美国物理联合会(AIP)所属《应用物理快报—光

太赫兹雷达技术最新应用及发展趋势

摘要:太赫兹雷达是太赫兹波应用研究中最重要的研究方向之一,相比于常规雷达,太赫兹雷达具有频率高、带宽宽、波束窄的特点,这些特点赋予了太赫兹雷达巨大的应用潜力。本文从技术特点、应用及发展现状、未来发展趋势等方面概述太赫兹雷达技术。太赫兹波是电磁波谱上介于微波与红外光之间的电磁波,其频率在0.1~10

毫米波与太赫兹技术(二)

1.3 硅基毫米波芯片硅基工艺传统上以数字电路应用为主。随着深亚微米和纳米工艺的不断发展,硅基工艺特征尺寸不断减小,栅长的缩短弥补了电子迁移率的不足,从而使得晶体管的截止频率和最大振荡频率不断提高,这使得硅工艺在毫米波甚至太赫兹频段的应用成为可能。国际半导体蓝图协会(International

“全频兼容”的可重构超宽带芯片来了

研究团队制备的超宽带光电融合芯片。北京大学供图  北京大学电子学院教授王兴军团队与香港城市大学教授王骋团队通过创新光电融合架构,成功实现芯片从“频段受限”到“全频兼容”的颠覆性突破,并在所有频段都实现了50~100Gbps的无线传输,比目前5G的传输速率高出2~3个数量级。这意味着,使用者无论在偏远

太赫兹雷达技术(五)

5.2 安检反恐应用近年来,国际国内反恐维稳形式呈现出袭击领域多、危害程度大、影响范围广的复杂态势,在公共安全场所对人员进行安检是预防公共安全事件最有效手段之一。目前以美国L3系统为代表的毫米波成像仪成熟度高且已部署应用,但机械扫描时需要人体静止驻留耗时略长,且阵元数目多、成本较高。太赫兹雷达具有分

太赫兹技术的优越特性以及应用(一)

太赫兹波段自从19世纪后期正式命名之后,收到欧美日中等多个国家的高度关注,各国纷纷将其入选改变世界的技术评比之中。尤其是中国,在当今的研究甚至超越了美日,名列世界前茅。 自从正式命名之后,涉及太赫兹波段的研究结果和数据却非常稀少,在此频段上,既不完全适合用光学理论来处理,也不完全适合微波的

太赫兹波与太赫兹技术

太赫兹波是指频率介于0.1~10THz之间的电磁波,其波长范围为 0.03~3 mm。太赫兹波在电磁波谱中的位置位于微波和红外辐射之间,故对其研究手段由电子学理论逐渐过渡为光子学理论。20世纪90年代以前,人们对太赫兹波的认识非常有限。近年来,随着激光技术、量子阱技术和半导体技术的发展,为太赫兹脉冲

石墨烯在太赫兹频段实现的无线片上网络(WiNoC)(二)

2. System Model of Nanocommunications in a GWiNoCFigure 1 illustrates a typical GWiNoC package where two on-chip cores  and  are both equipped with

石墨烯在太赫兹频段实现的无线片上网络(WiNoC)(三)

3.2. Molecular Absorption Attenuation (MAA)As the electromagnetic wave at frequency  passes through a transmission medium of distance , there exists a

石墨烯在太赫兹频段实现的无线片上网络(WiNoC)(五)

AppendixA. Proof of Theorem 4As the signal-to-noise ratio (SNR) is required for evaluating the achievable capacity of a communication system, we f

太赫兹频段的高Q微腔激发的新结构图

上海理工大学庄松林院士研究团队陈麟副教授和朱亦鸣教授、美国俄克拉荷马州立大学张伟力教授、东南大学崔铁军教授等,除了在太赫兹频段人工粒子的Fano效应中取得重要进展外,该课题组去年还提出了一种太赫兹频段的高Q微腔激发的新结构(图2(a)),用容易激发的C型谐振腔来间接激发暗态的微腔模式,并在实验中观察

石墨烯在太赫兹频段实现的无线片上网络(WiNoC)(四)

5. Numerical ResultsIn this section, the performance evaluation of the proposed channel model for the nanocommunications in GWiNoC in THz band is

石墨烯在太赫兹频段实现的无线片上网络(WiNoC)(一)

On the Nanocommunications at THz Band in Graphene-Enabled Wireless Network-on-ChipQuoc-Tuan Vien,1 Michael Opoku Agyeman,2 Tuan Anh Le,1 and TerrenceM

阴和俊出席中国科学院太赫兹技术及应用发展研讨会

  9月9日,高技术局在北京组织召开了“中国科学院太赫兹技术及应用发展研讨会”,阴和俊副院长出席会议并发表了重要讲话。姜景山院士、许祖彦院士、吴一戎院士以及院内18个单位的50余名专家代表参加了会议。与会专家围绕太赫兹源、太赫兹成像与通信、太赫兹天文探测、太赫兹与物质相互作用等方面展开

中国科学院太赫兹技术及应用发展研讨会在京召开

  9月9日,高技术局在北京组织召开了“中国科学院太赫兹技术及应用发展研讨会”,中科院副院长阴和俊出席会议并发表了重要讲话。姜景山院士、许祖彦院士、吴一戎院士以及院内18个单位的50余名专家代表参加了会议。与会专家围绕太赫兹源、太赫兹成像与通信、太赫兹天文探测、太赫兹与物质相互作用等方面展开了研讨。

太赫兹

太赫兹(Tera Hertz,THz)是波动频率单位之一,又称为太赫,或太拉赫兹。等于1,000,000,000,000Hz,通常用于表示电磁波频率。太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。历史早期

全球工程前沿解读:太赫兹核心器件及超高速无线应用

  太赫兹核心器件及超高速无线应用包括两个内涵:太赫兹频段核心功能器件以及太赫兹高速通信。太赫兹频段核心功能器件主要包括太赫兹频段的混频器、放大器、倍频器、调制器、天线导波结构及信道化组件等。太赫兹高速通信是以太赫兹信号作为载波的通信、数据传输和组网互联等,其主要应用方向为空间高速通信、航空海量数据